基于变分自编码器和残差网络的脉冲星识别

Guiru Liu, Yefan Li, Zelun Bao, Qian Yin, Ping Guo
{"title":"基于变分自编码器和残差网络的脉冲星识别","authors":"Guiru Liu, Yefan Li, Zelun Bao, Qian Yin, Ping Guo","doi":"10.1109/ICICIP53388.2021.9642198","DOIUrl":null,"url":null,"abstract":"In modern astronomy, pulsar identification is a vital task to help researchers discovering new pulsars. With the great progress of modern radio telescopes improves, the amount of pulsar data collected increases exponentially, which causes the traditional pulsar identification approaches to be not enough to tackle such a large dataset. At present, many pulsar identification methods achieve promising performance based on deep neural networks. However, those neural-network-based methods still face the sample imbalance problem, which limits their performance. To be specific, the pulsar sample imbalance problem is that only an extremely limited number of real pulsar samples exist in dataset. To alleviate the problem and enhance the pulsar identification performance, we present a novel method under the framework of synergetic learning systems which includes the variational autoencoder and residual network. In this work, the variational autoencoder is used to generate some high-quality pulsar samples for training procedure to mitigate the pulsar sample imbalance problem, and then we present a residual-network-based model to promote pulsar candidate identification performance. Extensive experiments on two pulsar datasets demonstrate that our framework not only alleviates the imbalance problem, but also improves the accuracy of pulsar identification.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pulsar Identification Based on Variational Autoencoder and Residual Network\",\"authors\":\"Guiru Liu, Yefan Li, Zelun Bao, Qian Yin, Ping Guo\",\"doi\":\"10.1109/ICICIP53388.2021.9642198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modern astronomy, pulsar identification is a vital task to help researchers discovering new pulsars. With the great progress of modern radio telescopes improves, the amount of pulsar data collected increases exponentially, which causes the traditional pulsar identification approaches to be not enough to tackle such a large dataset. At present, many pulsar identification methods achieve promising performance based on deep neural networks. However, those neural-network-based methods still face the sample imbalance problem, which limits their performance. To be specific, the pulsar sample imbalance problem is that only an extremely limited number of real pulsar samples exist in dataset. To alleviate the problem and enhance the pulsar identification performance, we present a novel method under the framework of synergetic learning systems which includes the variational autoencoder and residual network. In this work, the variational autoencoder is used to generate some high-quality pulsar samples for training procedure to mitigate the pulsar sample imbalance problem, and then we present a residual-network-based model to promote pulsar candidate identification performance. Extensive experiments on two pulsar datasets demonstrate that our framework not only alleviates the imbalance problem, but also improves the accuracy of pulsar identification.\",\"PeriodicalId\":435799,\"journal\":{\"name\":\"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP53388.2021.9642198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP53388.2021.9642198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在现代天文学中,脉冲星识别是帮助研究人员发现新的脉冲星的重要任务。随着现代射电望远镜技术的不断进步,采集到的脉冲星数据量呈指数级增长,传统的脉冲星识别方法已不足以处理如此庞大的数据集。目前,许多基于深度神经网络的脉冲星识别方法都取得了很好的效果。然而,这些基于神经网络的方法仍然面临着样本不平衡的问题,这限制了它们的性能。具体来说,脉冲星样本不平衡问题是指数据集中存在的真实脉冲星样本数量极其有限。为了解决这一问题,提高脉冲星的识别性能,我们提出了一种基于变分自编码器和残差网络的协同学习系统。本文首先利用变分自编码器生成高质量脉冲星样本进行训练,以缓解脉冲星样本不平衡的问题,然后提出基于残差网络的脉冲星候选识别模型,提高脉冲星候选识别的性能。在两个脉冲星数据集上的大量实验表明,该框架不仅缓解了不平衡问题,而且提高了脉冲星识别的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pulsar Identification Based on Variational Autoencoder and Residual Network
In modern astronomy, pulsar identification is a vital task to help researchers discovering new pulsars. With the great progress of modern radio telescopes improves, the amount of pulsar data collected increases exponentially, which causes the traditional pulsar identification approaches to be not enough to tackle such a large dataset. At present, many pulsar identification methods achieve promising performance based on deep neural networks. However, those neural-network-based methods still face the sample imbalance problem, which limits their performance. To be specific, the pulsar sample imbalance problem is that only an extremely limited number of real pulsar samples exist in dataset. To alleviate the problem and enhance the pulsar identification performance, we present a novel method under the framework of synergetic learning systems which includes the variational autoencoder and residual network. In this work, the variational autoencoder is used to generate some high-quality pulsar samples for training procedure to mitigate the pulsar sample imbalance problem, and then we present a residual-network-based model to promote pulsar candidate identification performance. Extensive experiments on two pulsar datasets demonstrate that our framework not only alleviates the imbalance problem, but also improves the accuracy of pulsar identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel RBF neural network based recognition of human upper limb active motion intention Time-Varying Polar Decomposition by Continuous-Time Model and Discrete-Time Algorithm of Zeroing Neural Network Using Zhang Time Discretization (ZTD) Integrated Res2Net combined with Seesaw loss for Long-Tailed PCG signal classification On Pinning Synchronization of An Array of Linearly Coupled Dynamical Network Design and Implementation of Braking Control for Hybrid Electric Vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1