基于深度学习的不同相位噪声电平QPSK信号分类

Hatim Alhazmi, Alhussain Almarhabi, Abdullah Samarkandi, Mofadal Alymani, Mohsen H. Alhazmi, Zikang Sheng, Yu-dong Yao
{"title":"基于深度学习的不同相位噪声电平QPSK信号分类","authors":"Hatim Alhazmi, Alhussain Almarhabi, Abdullah Samarkandi, Mofadal Alymani, Mohsen H. Alhazmi, Zikang Sheng, Yu-dong Yao","doi":"10.1109/WOCC48579.2020.9114928","DOIUrl":null,"url":null,"abstract":"Spectrum awareness allows the understanding of the wireless systems environment and it gives engineers and designers better control in systems design and analysis. Phase noise is one of the characteristics of the channel distortion or device distortion, which causes transmission errors. In this paper, a deep learning network is utilized to study and identify different phase noise levels for quadrature phase shift keying (QPSK) signals. Our experiment results show that the deep learning neural network is capable of classifying a wide range of phase noise levels.","PeriodicalId":187607,"journal":{"name":"2020 29th Wireless and Optical Communications Conference (WOCC)","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Classification of QPSK Signals with Different Phase Noise Levels Using Deep Learning\",\"authors\":\"Hatim Alhazmi, Alhussain Almarhabi, Abdullah Samarkandi, Mofadal Alymani, Mohsen H. Alhazmi, Zikang Sheng, Yu-dong Yao\",\"doi\":\"10.1109/WOCC48579.2020.9114928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectrum awareness allows the understanding of the wireless systems environment and it gives engineers and designers better control in systems design and analysis. Phase noise is one of the characteristics of the channel distortion or device distortion, which causes transmission errors. In this paper, a deep learning network is utilized to study and identify different phase noise levels for quadrature phase shift keying (QPSK) signals. Our experiment results show that the deep learning neural network is capable of classifying a wide range of phase noise levels.\",\"PeriodicalId\":187607,\"journal\":{\"name\":\"2020 29th Wireless and Optical Communications Conference (WOCC)\",\"volume\":\"2016 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 29th Wireless and Optical Communications Conference (WOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WOCC48579.2020.9114928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 29th Wireless and Optical Communications Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC48579.2020.9114928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

频谱感知允许了解无线系统环境,并为工程师和设计人员提供更好的系统设计和分析控制。相位噪声是信道失真或器件失真的特征之一,引起传输误差。本文利用深度学习网络来研究和识别正交相移键控(QPSK)信号的不同相位噪声电平。实验结果表明,深度学习神经网络能够对大范围的相位噪声进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of QPSK Signals with Different Phase Noise Levels Using Deep Learning
Spectrum awareness allows the understanding of the wireless systems environment and it gives engineers and designers better control in systems design and analysis. Phase noise is one of the characteristics of the channel distortion or device distortion, which causes transmission errors. In this paper, a deep learning network is utilized to study and identify different phase noise levels for quadrature phase shift keying (QPSK) signals. Our experiment results show that the deep learning neural network is capable of classifying a wide range of phase noise levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Copyright notice] MAC Protocol Identification Using Convolutional Neural Networks Efficient Methods and Architectures for Mean and Variance Estimations of QAM Symbols A Convolutional Neural Network Approach to Improving Network Visibility Data-driven Surplus Material Prediction in Steel Coil Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1