面对监控

S. Gutta, Jeffrey R. Huang, Vishal Kakkad, H. Wechsler
{"title":"面对监控","authors":"S. Gutta, Jeffrey R. Huang, Vishal Kakkad, H. Wechsler","doi":"10.1109/ICCV.1998.710786","DOIUrl":null,"url":null,"abstract":"Most of the research on face recognition addresses the MATCH problem and it assumes a closed universe where there is no need for a REJECT ('false positive') option. The SURVEILLANCE problem is addressed indirectly, if at all, through the MATCH problem, where the size of the gallery rather than that of the probe set is very large. This paper addresses the proper surveillance problem where the size of the probe ('unknown image') set vs. gallery ('known image') set is 450 vs. 50 frontal images. We developed robust face ID verification ('classification') and retrieval schemes based on hybrid classifiers and showed their feasibility using the FERET face data base. The hybrid classifier architecture consists of an ensemble of connectionist networks-Radial Basis Functions (RBF) and inductive decision trees (DT). Experimental results prove the feasibility of our approach and yield 97% accuracy using the probe and gallery sets specified above.","PeriodicalId":270671,"journal":{"name":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","volume":"48 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Face surveillance\",\"authors\":\"S. Gutta, Jeffrey R. Huang, Vishal Kakkad, H. Wechsler\",\"doi\":\"10.1109/ICCV.1998.710786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the research on face recognition addresses the MATCH problem and it assumes a closed universe where there is no need for a REJECT ('false positive') option. The SURVEILLANCE problem is addressed indirectly, if at all, through the MATCH problem, where the size of the gallery rather than that of the probe set is very large. This paper addresses the proper surveillance problem where the size of the probe ('unknown image') set vs. gallery ('known image') set is 450 vs. 50 frontal images. We developed robust face ID verification ('classification') and retrieval schemes based on hybrid classifiers and showed their feasibility using the FERET face data base. The hybrid classifier architecture consists of an ensemble of connectionist networks-Radial Basis Functions (RBF) and inductive decision trees (DT). Experimental results prove the feasibility of our approach and yield 97% accuracy using the probe and gallery sets specified above.\",\"PeriodicalId\":270671,\"journal\":{\"name\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"volume\":\"48 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.1998.710786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.1998.710786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

大多数关于人脸识别的研究都解决了匹配问题,它假设了一个封闭的宇宙,在这个宇宙中不需要拒绝(“假阳性”)选项。监视问题是通过MATCH问题间接解决的,在MATCH问题中,库的大小而不是探测集的大小非常大。本文解决了适当的监控问题,其中探针(“未知图像”)集与画廊(“已知图像”)集的大小为450对50正面图像。我们开发了基于混合分类器的鲁棒人脸ID验证(“分类”)和检索方案,并使用FERET人脸数据库证明了它们的可行性。混合分类器结构由连接网络-径向基函数(RBF)和归纳决策树(DT)组成。实验结果证明了该方法的可行性,使用上述探针和画廊集的准确率达到97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Face surveillance
Most of the research on face recognition addresses the MATCH problem and it assumes a closed universe where there is no need for a REJECT ('false positive') option. The SURVEILLANCE problem is addressed indirectly, if at all, through the MATCH problem, where the size of the gallery rather than that of the probe set is very large. This paper addresses the proper surveillance problem where the size of the probe ('unknown image') set vs. gallery ('known image') set is 450 vs. 50 frontal images. We developed robust face ID verification ('classification') and retrieval schemes based on hybrid classifiers and showed their feasibility using the FERET face data base. The hybrid classifier architecture consists of an ensemble of connectionist networks-Radial Basis Functions (RBF) and inductive decision trees (DT). Experimental results prove the feasibility of our approach and yield 97% accuracy using the probe and gallery sets specified above.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparing and evaluating interest points Snake pedals: geometric models with physics-based control Recovering epipolar geometry by reactive tabu search Utilization of stereo disparity and optical flow information for human interaction Intensity and feature based stereo matching by disparity parameterization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1