{"title":"水下航行器操纵的非线性运动控制","authors":"Sharmila Kayastha, A. Fowler, A. Cameron","doi":"10.1109/anzcc53563.2021.9628391","DOIUrl":null,"url":null,"abstract":"This paper provides a comparative study of nonlinear motion control techniques for a generic BB2 underwater vehicle. Two different nonlinear controllers, state feedback linearisation control and Nonlinear Model Predictive Control (NMPC), are developed to track defined manoeuvres of the vehicle. The highly nonlinear and coupled dynamics, system uncertainties and environmental disturbances of underwater vehicles make their control design difficult. This paper attempts to compensate these nonlinearities by applying the proposed nonlinear controllers. The primary objective of the proposed nonlinear controllers is to track the desired states of the BB2 vehicle effectively. The effectiveness of these proposed controllers are examined through numerical simulations. The simulation results of the proposed controllers are then compared and discussed. The simulation results show the effectiveness of the proposed controllers, which are essential for the safe operation of the BB2 underwater vehicle.","PeriodicalId":246687,"journal":{"name":"2021 Australian & New Zealand Control Conference (ANZCC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nonlinear Motion Control for Manoeuvring of an Underwater Vehicle\",\"authors\":\"Sharmila Kayastha, A. Fowler, A. Cameron\",\"doi\":\"10.1109/anzcc53563.2021.9628391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a comparative study of nonlinear motion control techniques for a generic BB2 underwater vehicle. Two different nonlinear controllers, state feedback linearisation control and Nonlinear Model Predictive Control (NMPC), are developed to track defined manoeuvres of the vehicle. The highly nonlinear and coupled dynamics, system uncertainties and environmental disturbances of underwater vehicles make their control design difficult. This paper attempts to compensate these nonlinearities by applying the proposed nonlinear controllers. The primary objective of the proposed nonlinear controllers is to track the desired states of the BB2 vehicle effectively. The effectiveness of these proposed controllers are examined through numerical simulations. The simulation results of the proposed controllers are then compared and discussed. The simulation results show the effectiveness of the proposed controllers, which are essential for the safe operation of the BB2 underwater vehicle.\",\"PeriodicalId\":246687,\"journal\":{\"name\":\"2021 Australian & New Zealand Control Conference (ANZCC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Australian & New Zealand Control Conference (ANZCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/anzcc53563.2021.9628391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Australian & New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/anzcc53563.2021.9628391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonlinear Motion Control for Manoeuvring of an Underwater Vehicle
This paper provides a comparative study of nonlinear motion control techniques for a generic BB2 underwater vehicle. Two different nonlinear controllers, state feedback linearisation control and Nonlinear Model Predictive Control (NMPC), are developed to track defined manoeuvres of the vehicle. The highly nonlinear and coupled dynamics, system uncertainties and environmental disturbances of underwater vehicles make their control design difficult. This paper attempts to compensate these nonlinearities by applying the proposed nonlinear controllers. The primary objective of the proposed nonlinear controllers is to track the desired states of the BB2 vehicle effectively. The effectiveness of these proposed controllers are examined through numerical simulations. The simulation results of the proposed controllers are then compared and discussed. The simulation results show the effectiveness of the proposed controllers, which are essential for the safe operation of the BB2 underwater vehicle.