{"title":"量子超材料中光脉冲透明度的色散管理","authors":"Z. Ivić, D. Chevizovich, Ž. Pržulj, I. Ivkovic","doi":"10.1109/INFOTEH57020.2023.10094191","DOIUrl":null,"url":null,"abstract":"We present a theoretical prediction of a novel, nonEIT, mechanism for the achievement of a transparency window. It relies on an intrinsically nonlinear (soliton type) mechanism which may be exploited for the production of slow light, which may appear in a photonic band-gap structure: the infinite coupled cavity array (CCA), filled with two-level systems - qubits. Each cavity contains a single qubit. The most important prediction is substantial dependence of the pulse transparency on its width. In particular, the medium is opaque for very short pulses with carrier wave frequency below the photonic gap. When the pulse width exceeds the critical one, a twin transparency window separated by a finite band gap appears in the SIT pulse dispersion law. Both low-frequency TW and the SIT pulse band gap lie entirely within the polaritonic band gap.","PeriodicalId":287923,"journal":{"name":"2023 22nd International Symposium INFOTEH-JAHORINA (INFOTEH)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dispersion Management of Light Pulse Transparency in Quantum Metamaterials\",\"authors\":\"Z. Ivić, D. Chevizovich, Ž. Pržulj, I. Ivkovic\",\"doi\":\"10.1109/INFOTEH57020.2023.10094191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a theoretical prediction of a novel, nonEIT, mechanism for the achievement of a transparency window. It relies on an intrinsically nonlinear (soliton type) mechanism which may be exploited for the production of slow light, which may appear in a photonic band-gap structure: the infinite coupled cavity array (CCA), filled with two-level systems - qubits. Each cavity contains a single qubit. The most important prediction is substantial dependence of the pulse transparency on its width. In particular, the medium is opaque for very short pulses with carrier wave frequency below the photonic gap. When the pulse width exceeds the critical one, a twin transparency window separated by a finite band gap appears in the SIT pulse dispersion law. Both low-frequency TW and the SIT pulse band gap lie entirely within the polaritonic band gap.\",\"PeriodicalId\":287923,\"journal\":{\"name\":\"2023 22nd International Symposium INFOTEH-JAHORINA (INFOTEH)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 22nd International Symposium INFOTEH-JAHORINA (INFOTEH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOTEH57020.2023.10094191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 22nd International Symposium INFOTEH-JAHORINA (INFOTEH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOTEH57020.2023.10094191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dispersion Management of Light Pulse Transparency in Quantum Metamaterials
We present a theoretical prediction of a novel, nonEIT, mechanism for the achievement of a transparency window. It relies on an intrinsically nonlinear (soliton type) mechanism which may be exploited for the production of slow light, which may appear in a photonic band-gap structure: the infinite coupled cavity array (CCA), filled with two-level systems - qubits. Each cavity contains a single qubit. The most important prediction is substantial dependence of the pulse transparency on its width. In particular, the medium is opaque for very short pulses with carrier wave frequency below the photonic gap. When the pulse width exceeds the critical one, a twin transparency window separated by a finite band gap appears in the SIT pulse dispersion law. Both low-frequency TW and the SIT pulse band gap lie entirely within the polaritonic band gap.