基于脑机接口增强通信的ERP数据刺激自动分类

Jessica Leoni, M. Tanelli, S. Strada, Kaijun Jiang, A. Brusa, A. Proverbio
{"title":"基于脑机接口增强通信的ERP数据刺激自动分类","authors":"Jessica Leoni, M. Tanelli, S. Strada, Kaijun Jiang, A. Brusa, A. Proverbio","doi":"10.1109/ICHMS49158.2020.9209393","DOIUrl":null,"url":null,"abstract":"Brain-computer interfaces (BCIs) are systems initially designed to compensate for motor disabilities affecting people whose control of the muscular system is compromised. However, recent developments open the BCIs market to a wide range of medical and non-medical applications. This raises the need for systems capable of interpreting more and more stimuli, even from different sensory domains. In this work, we design a machine-learning system able to fit both application domains accurately recognizing visual and auditory stimuli starting from the event-related potentials (ERPs) they generate. The obtained results are promising and some practical and realization aspects are discussed.","PeriodicalId":132917,"journal":{"name":"2020 IEEE International Conference on Human-Machine Systems (ICHMS)","volume":"166 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Automatic stimuli classification from ERP data for augmented communication via Brain-Computer Interfaces\",\"authors\":\"Jessica Leoni, M. Tanelli, S. Strada, Kaijun Jiang, A. Brusa, A. Proverbio\",\"doi\":\"10.1109/ICHMS49158.2020.9209393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain-computer interfaces (BCIs) are systems initially designed to compensate for motor disabilities affecting people whose control of the muscular system is compromised. However, recent developments open the BCIs market to a wide range of medical and non-medical applications. This raises the need for systems capable of interpreting more and more stimuli, even from different sensory domains. In this work, we design a machine-learning system able to fit both application domains accurately recognizing visual and auditory stimuli starting from the event-related potentials (ERPs) they generate. The obtained results are promising and some practical and realization aspects are discussed.\",\"PeriodicalId\":132917,\"journal\":{\"name\":\"2020 IEEE International Conference on Human-Machine Systems (ICHMS)\",\"volume\":\"166 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Human-Machine Systems (ICHMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHMS49158.2020.9209393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Human-Machine Systems (ICHMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHMS49158.2020.9209393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

脑机接口(bci)是最初设计用于补偿影响肌肉系统控制受损的运动障碍的系统。然而,最近的发展使脑机接口市场向广泛的医疗和非医疗应用开放。这就要求系统能够解释越来越多的刺激,甚至是来自不同感官领域的刺激。在这项工作中,我们设计了一个机器学习系统,能够适应两个应用领域,从它们产生的事件相关电位(erp)开始准确识别视觉和听觉刺激。所得结果是有希望的,并讨论了一些实际和实现方面的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic stimuli classification from ERP data for augmented communication via Brain-Computer Interfaces
Brain-computer interfaces (BCIs) are systems initially designed to compensate for motor disabilities affecting people whose control of the muscular system is compromised. However, recent developments open the BCIs market to a wide range of medical and non-medical applications. This raises the need for systems capable of interpreting more and more stimuli, even from different sensory domains. In this work, we design a machine-learning system able to fit both application domains accurately recognizing visual and auditory stimuli starting from the event-related potentials (ERPs) they generate. The obtained results are promising and some practical and realization aspects are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Finite Time Sliding Mode Control of Connected Vehicle Platoons Guaranteeing String Stability User detection of threats with different security measures Driver Hazard Response When Processing On-road and In-vehicle Messaging of Non-Safety-Related Information Towards trustworthiness and transparency in social human-robot interaction Collaborative Environmental Monitoring through Teams of Trusted IoT devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1