日本新冠肺炎争议话题回顾性分析

K. Miyazaki, T. Uchiba, F. Toriumi, Kenji Tanaka, Takeshi Sakaki
{"title":"日本新冠肺炎争议话题回顾性分析","authors":"K. Miyazaki, T. Uchiba, F. Toriumi, Kenji Tanaka, Takeshi Sakaki","doi":"10.1145/3487351.3490963","DOIUrl":null,"url":null,"abstract":"For efficient policy-making, a thorough recognition of controversial topics is crucial because the cost of unmitigated controversies would be extremely high for society. However, identifying controversial topics is costly. In this paper, we proposed a framework to search for controversial topics comprehensively. We then conducted a retrospective analysis of the controversial topics of COVID-19 with data obtained via Twitter in Japan as a case study of the framework. The results show that the proposed framework can effectively detect controversial topics that reflect current reality. Controversial topics tend to be about the government, medical matters, economy, and education; moreover, the controversy score had a low correlation with the traditional indicators-scale and sentiment of the topics-which suggests that the controversy score is a potentially important indicator to be obtained. We also discussed the difference between highly controversial topics and less controversial ones despite their large scale and sentiment.","PeriodicalId":320904,"journal":{"name":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","volume":"427 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Retrospective analysis of controversial topics on COVID-19 in Japan\",\"authors\":\"K. Miyazaki, T. Uchiba, F. Toriumi, Kenji Tanaka, Takeshi Sakaki\",\"doi\":\"10.1145/3487351.3490963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For efficient policy-making, a thorough recognition of controversial topics is crucial because the cost of unmitigated controversies would be extremely high for society. However, identifying controversial topics is costly. In this paper, we proposed a framework to search for controversial topics comprehensively. We then conducted a retrospective analysis of the controversial topics of COVID-19 with data obtained via Twitter in Japan as a case study of the framework. The results show that the proposed framework can effectively detect controversial topics that reflect current reality. Controversial topics tend to be about the government, medical matters, economy, and education; moreover, the controversy score had a low correlation with the traditional indicators-scale and sentiment of the topics-which suggests that the controversy score is a potentially important indicator to be obtained. We also discussed the difference between highly controversial topics and less controversial ones despite their large scale and sentiment.\",\"PeriodicalId\":320904,\"journal\":{\"name\":\"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining\",\"volume\":\"427 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3487351.3490963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3487351.3490963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了有效地制定政策,彻底认识到有争议的话题是至关重要的,因为未经缓解的争议对社会来说将是非常高的成本。然而,确定有争议的话题是昂贵的。在本文中,我们提出了一个全面搜索争议话题的框架。然后,我们对COVID-19有争议的话题进行了回顾性分析,并通过Twitter在日本获得数据,作为该框架的案例研究。结果表明,所提出的框架能够有效地检测反映当前现实的争议话题。有争议的话题往往是关于政府、医疗、经济和教育的;此外,争议得分与传统指标(主题的规模和情绪)的相关性较低,这表明争议得分是一个潜在的重要指标。我们还讨论了高争议性话题和低争议性话题之间的区别,尽管它们的规模和情绪都很大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Retrospective analysis of controversial topics on COVID-19 in Japan
For efficient policy-making, a thorough recognition of controversial topics is crucial because the cost of unmitigated controversies would be extremely high for society. However, identifying controversial topics is costly. In this paper, we proposed a framework to search for controversial topics comprehensively. We then conducted a retrospective analysis of the controversial topics of COVID-19 with data obtained via Twitter in Japan as a case study of the framework. The results show that the proposed framework can effectively detect controversial topics that reflect current reality. Controversial topics tend to be about the government, medical matters, economy, and education; moreover, the controversy score had a low correlation with the traditional indicators-scale and sentiment of the topics-which suggests that the controversy score is a potentially important indicator to be obtained. We also discussed the difference between highly controversial topics and less controversial ones despite their large scale and sentiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting COVID-19 with AI techniques: current research and future directions Predictions of drug metabolism pathways through CYP 3A4 enzyme by analysing drug-target interactions network graph An insight into network structure measures and number of driver nodes Temporal dynamics of posts and user engagement of influencers on Facebook and Instagram Vibe check: social resonance learning for enhanced recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1