{"title":"一种无人机混合三维路径规划方法","authors":"D. Ortiz-Arroyo","doi":"10.1109/RED-UAS.2015.7440999","DOIUrl":null,"url":null,"abstract":"This paper presents a hybrid method for path planning in 3D spaces. We propose an improvement to a near-optimal 2D off-line algorithm and a flexible normalized on-line fuzzy controller to find shortest paths. Our method, targeted to low altitude domains, is simple and efficient. Our preliminary results obtained by simulation show the effectiveness of our method.","PeriodicalId":317787,"journal":{"name":"2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A hybrid 3D path planning method for UAVs\",\"authors\":\"D. Ortiz-Arroyo\",\"doi\":\"10.1109/RED-UAS.2015.7440999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a hybrid method for path planning in 3D spaces. We propose an improvement to a near-optimal 2D off-line algorithm and a flexible normalized on-line fuzzy controller to find shortest paths. Our method, targeted to low altitude domains, is simple and efficient. Our preliminary results obtained by simulation show the effectiveness of our method.\",\"PeriodicalId\":317787,\"journal\":{\"name\":\"2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RED-UAS.2015.7440999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RED-UAS.2015.7440999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents a hybrid method for path planning in 3D spaces. We propose an improvement to a near-optimal 2D off-line algorithm and a flexible normalized on-line fuzzy controller to find shortest paths. Our method, targeted to low altitude domains, is simple and efficient. Our preliminary results obtained by simulation show the effectiveness of our method.