多层:动态多关系网络的可视化分析

A. Meidiana, Seok-Hee Hong
{"title":"多层:动态多关系网络的可视化分析","authors":"A. Meidiana, Seok-Hee Hong","doi":"10.1109/PACIFICVIS.2015.7156359","DOIUrl":null,"url":null,"abstract":"Modern-day social networks are often dynamic and multi-relational, however there is currently little being studied on how to incorporate both aspects simultaneously to support visual analytic tasks for such complex social networks. We present a visual analytic framework for dynamic multi-relational networks and a prototype implementation, called the MultiStory system, which includes two new visualisation methods, AlterCluster and InterArc, designed for dynamic networks with multiple relations. The system is evaluated with two case studies using social networks from the MIT Reality Commons to demonstrate the effectiveness of the system to support a variety of visual analytical tasks on dynamic multi-relational networks.","PeriodicalId":177381,"journal":{"name":"2015 IEEE Pacific Visualization Symposium (PacificVis)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"MultiStory: Visual analytics of dynamic multi-relational networks\",\"authors\":\"A. Meidiana, Seok-Hee Hong\",\"doi\":\"10.1109/PACIFICVIS.2015.7156359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern-day social networks are often dynamic and multi-relational, however there is currently little being studied on how to incorporate both aspects simultaneously to support visual analytic tasks for such complex social networks. We present a visual analytic framework for dynamic multi-relational networks and a prototype implementation, called the MultiStory system, which includes two new visualisation methods, AlterCluster and InterArc, designed for dynamic networks with multiple relations. The system is evaluated with two case studies using social networks from the MIT Reality Commons to demonstrate the effectiveness of the system to support a variety of visual analytical tasks on dynamic multi-relational networks.\",\"PeriodicalId\":177381,\"journal\":{\"name\":\"2015 IEEE Pacific Visualization Symposium (PacificVis)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Pacific Visualization Symposium (PacificVis)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACIFICVIS.2015.7156359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIFICVIS.2015.7156359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

现代社会网络通常是动态的和多关系的,然而目前很少有人研究如何同时结合这两个方面来支持如此复杂的社会网络的可视化分析任务。我们提出了一个动态多关系网络的可视化分析框架和一个原型实现,称为MultiStory系统,其中包括两种新的可视化方法,AlterCluster和InterArc,专为具有多关系的动态网络设计。该系统通过使用麻省理工学院现实共享网络的两个案例研究进行评估,以证明该系统在支持动态多关系网络上各种视觉分析任务方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MultiStory: Visual analytics of dynamic multi-relational networks
Modern-day social networks are often dynamic and multi-relational, however there is currently little being studied on how to incorporate both aspects simultaneously to support visual analytic tasks for such complex social networks. We present a visual analytic framework for dynamic multi-relational networks and a prototype implementation, called the MultiStory system, which includes two new visualisation methods, AlterCluster and InterArc, designed for dynamic networks with multiple relations. The system is evaluated with two case studies using social networks from the MIT Reality Commons to demonstrate the effectiveness of the system to support a variety of visual analytical tasks on dynamic multi-relational networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clutter-aware label layout MetaTracts - A method for robust extraction and visualization of carbon fiber bundles in fiber reinforced composites Variational circular treemaps for interactive visualization of hierarchical data Advanced lighting for unstructured-grid data visualization Laplacian-based dynamic graph visualization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1