泵振动外部激励下非接触式机械密封振动的预测:第一部分-灵活安装的定子

Clay S. Norrbin, D. Childs
{"title":"泵振动外部激励下非接触式机械密封振动的预测:第一部分-灵活安装的定子","authors":"Clay S. Norrbin, D. Childs","doi":"10.1115/gt2018-77198","DOIUrl":null,"url":null,"abstract":"Stability and response predictions are presented for a Flexibly Mounted Stator (FMS) mechanical seal ring using the model developed by Childs in 2018. The seal ring is excited by external vibration from the rotor/housing. The model includes a frequency dependent stiffness and damping model for the O-ring and a frequency independent model for the fluid film. The dynamic coefficients depend on both speed and excitation frequency. Data used in defining the model are representative of a typical FMS mechanical seal. Parameters for radius and O-Ring placement are varied. The predictions show an insignificant dependency on speed. The predictions are strongly frequency dependent with a critical speed of 90 kRPM. The FMS is predicted to be stable to frequencies below 140 kRPM. The distance between the O-Ring and seal ring inertia center doz couples lateral and pitch-yaw motion of the seal ring. Overall, if doz is kept small, the seal ring is predicted to not have any stability or response issues.","PeriodicalId":131756,"journal":{"name":"Volume 7B: Structures and Dynamics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictions for Non-Contacting Mechanical Face Seal Vibration With External Excitation From Pump Vibration: Part I — Flexibly Mounted Stator\",\"authors\":\"Clay S. Norrbin, D. Childs\",\"doi\":\"10.1115/gt2018-77198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stability and response predictions are presented for a Flexibly Mounted Stator (FMS) mechanical seal ring using the model developed by Childs in 2018. The seal ring is excited by external vibration from the rotor/housing. The model includes a frequency dependent stiffness and damping model for the O-ring and a frequency independent model for the fluid film. The dynamic coefficients depend on both speed and excitation frequency. Data used in defining the model are representative of a typical FMS mechanical seal. Parameters for radius and O-Ring placement are varied. The predictions show an insignificant dependency on speed. The predictions are strongly frequency dependent with a critical speed of 90 kRPM. The FMS is predicted to be stable to frequencies below 140 kRPM. The distance between the O-Ring and seal ring inertia center doz couples lateral and pitch-yaw motion of the seal ring. Overall, if doz is kept small, the seal ring is predicted to not have any stability or response issues.\",\"PeriodicalId\":131756,\"journal\":{\"name\":\"Volume 7B: Structures and Dynamics\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7B: Structures and Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2018-77198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7B: Structures and Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2018-77198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用Childs在2018年开发的模型,对柔性安装定子(FMS)机械密封圈进行了稳定性和响应预测。密封圈是由转子/机壳的外部振动激发的。该模型包括o形圈的频率相关刚度和阻尼模型和流体膜的频率无关模型。动力系数取决于速度和激励频率。用于定义模型的数据代表了典型的FMS机械密封。半径和o形圈放置的参数是不同的。预测显示,对速度的依赖并不明显。预测结果与频率密切相关,临界速度为90 kRPM。预测FMS在低于140 kRPM的频率下是稳定的。o形圈与密封圈惯性中心之间的距离耦合了密封圈的侧向运动和俯仰运动。总的来说,如果doz保持小,密封圈预计不会有任何稳定性或响应问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predictions for Non-Contacting Mechanical Face Seal Vibration With External Excitation From Pump Vibration: Part I — Flexibly Mounted Stator
Stability and response predictions are presented for a Flexibly Mounted Stator (FMS) mechanical seal ring using the model developed by Childs in 2018. The seal ring is excited by external vibration from the rotor/housing. The model includes a frequency dependent stiffness and damping model for the O-ring and a frequency independent model for the fluid film. The dynamic coefficients depend on both speed and excitation frequency. Data used in defining the model are representative of a typical FMS mechanical seal. Parameters for radius and O-Ring placement are varied. The predictions show an insignificant dependency on speed. The predictions are strongly frequency dependent with a critical speed of 90 kRPM. The FMS is predicted to be stable to frequencies below 140 kRPM. The distance between the O-Ring and seal ring inertia center doz couples lateral and pitch-yaw motion of the seal ring. Overall, if doz is kept small, the seal ring is predicted to not have any stability or response issues.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation, Test and Mitigation of 1/2X Forward Whirl Following Rotor Drop Onto Auxiliary Bearings Study on Vibration Response Characteristics of Mistuned Bladed Disk Expressed by Vibratory Stress Pump Grooved Seals: A CFD Approach to Improve Bulk-Flow Model Predictions Comparison of a Liquid Annular Seal for Pump Applications With and Without a Swirl Brake Prediction of Geometrically Induced Localization Effects Using a Subset of Nominal System Modes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1