{"title":"泵振动外部激励下非接触式机械密封振动的预测:第一部分-灵活安装的定子","authors":"Clay S. Norrbin, D. Childs","doi":"10.1115/gt2018-77198","DOIUrl":null,"url":null,"abstract":"Stability and response predictions are presented for a Flexibly Mounted Stator (FMS) mechanical seal ring using the model developed by Childs in 2018. The seal ring is excited by external vibration from the rotor/housing. The model includes a frequency dependent stiffness and damping model for the O-ring and a frequency independent model for the fluid film. The dynamic coefficients depend on both speed and excitation frequency. Data used in defining the model are representative of a typical FMS mechanical seal. Parameters for radius and O-Ring placement are varied. The predictions show an insignificant dependency on speed. The predictions are strongly frequency dependent with a critical speed of 90 kRPM. The FMS is predicted to be stable to frequencies below 140 kRPM. The distance between the O-Ring and seal ring inertia center doz couples lateral and pitch-yaw motion of the seal ring. Overall, if doz is kept small, the seal ring is predicted to not have any stability or response issues.","PeriodicalId":131756,"journal":{"name":"Volume 7B: Structures and Dynamics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictions for Non-Contacting Mechanical Face Seal Vibration With External Excitation From Pump Vibration: Part I — Flexibly Mounted Stator\",\"authors\":\"Clay S. Norrbin, D. Childs\",\"doi\":\"10.1115/gt2018-77198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stability and response predictions are presented for a Flexibly Mounted Stator (FMS) mechanical seal ring using the model developed by Childs in 2018. The seal ring is excited by external vibration from the rotor/housing. The model includes a frequency dependent stiffness and damping model for the O-ring and a frequency independent model for the fluid film. The dynamic coefficients depend on both speed and excitation frequency. Data used in defining the model are representative of a typical FMS mechanical seal. Parameters for radius and O-Ring placement are varied. The predictions show an insignificant dependency on speed. The predictions are strongly frequency dependent with a critical speed of 90 kRPM. The FMS is predicted to be stable to frequencies below 140 kRPM. The distance between the O-Ring and seal ring inertia center doz couples lateral and pitch-yaw motion of the seal ring. Overall, if doz is kept small, the seal ring is predicted to not have any stability or response issues.\",\"PeriodicalId\":131756,\"journal\":{\"name\":\"Volume 7B: Structures and Dynamics\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7B: Structures and Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2018-77198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7B: Structures and Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2018-77198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predictions for Non-Contacting Mechanical Face Seal Vibration With External Excitation From Pump Vibration: Part I — Flexibly Mounted Stator
Stability and response predictions are presented for a Flexibly Mounted Stator (FMS) mechanical seal ring using the model developed by Childs in 2018. The seal ring is excited by external vibration from the rotor/housing. The model includes a frequency dependent stiffness and damping model for the O-ring and a frequency independent model for the fluid film. The dynamic coefficients depend on both speed and excitation frequency. Data used in defining the model are representative of a typical FMS mechanical seal. Parameters for radius and O-Ring placement are varied. The predictions show an insignificant dependency on speed. The predictions are strongly frequency dependent with a critical speed of 90 kRPM. The FMS is predicted to be stable to frequencies below 140 kRPM. The distance between the O-Ring and seal ring inertia center doz couples lateral and pitch-yaw motion of the seal ring. Overall, if doz is kept small, the seal ring is predicted to not have any stability or response issues.