{"title":"颅内压、眼内压、脑灌注压和动脉压动态相互作用的电模型","authors":"K. Charoensuk, T. Sethaput, I. Nilkhamhang","doi":"10.1109/BMEiCON47515.2019.8990274","DOIUrl":null,"url":null,"abstract":"In case study, the dynamical behavior of various systems including intracranial pressure (ICP), cerebral perfusion pressure (CPP), intraocular pressure (IOP), arterial blood pressure (ABP), and blood flow (BF) are studied based on the equivalent electrical model. The healthy people from clinical data are used for study those behaviors. Resistor-Capacitance network is constructed to simulate ICP inside the skull, IOP of the retinal vessel, CPP in the skull. Moreover, ABP from the heart (85 - 120 mmHg) and Intraspinal Pressure (ISP) (50 - 60 mmHg) are applied as inputs to this model. The results show the value of ICP of normal state, IOP, and CPP in the skull are 5-15 mmHg, 20-35 mmHg, and 65-90 mmHg respectively. For the phase relationship among ABP, CPP, IOP, and ICP are synchronized. The differential phase between ABP and BF is 0.25 to 0.5 second where ABP waveform was leaded BF waveform. Our model is verified by clinical data from noninvasive measuring method. This model provides a clear explanation of the interaction behavior between ICP, CCP, IOP, ABP and BF of healthy individuals.","PeriodicalId":213939,"journal":{"name":"2019 12th Biomedical Engineering International Conference (BMEiCON)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Electrical Modeling of Dynamical Interaction among Intracranial Pressure, Intraocular Pressure, Cerebral Perfusion Pressure, and Arterial Blood Pressure\",\"authors\":\"K. Charoensuk, T. Sethaput, I. Nilkhamhang\",\"doi\":\"10.1109/BMEiCON47515.2019.8990274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In case study, the dynamical behavior of various systems including intracranial pressure (ICP), cerebral perfusion pressure (CPP), intraocular pressure (IOP), arterial blood pressure (ABP), and blood flow (BF) are studied based on the equivalent electrical model. The healthy people from clinical data are used for study those behaviors. Resistor-Capacitance network is constructed to simulate ICP inside the skull, IOP of the retinal vessel, CPP in the skull. Moreover, ABP from the heart (85 - 120 mmHg) and Intraspinal Pressure (ISP) (50 - 60 mmHg) are applied as inputs to this model. The results show the value of ICP of normal state, IOP, and CPP in the skull are 5-15 mmHg, 20-35 mmHg, and 65-90 mmHg respectively. For the phase relationship among ABP, CPP, IOP, and ICP are synchronized. The differential phase between ABP and BF is 0.25 to 0.5 second where ABP waveform was leaded BF waveform. Our model is verified by clinical data from noninvasive measuring method. This model provides a clear explanation of the interaction behavior between ICP, CCP, IOP, ABP and BF of healthy individuals.\",\"PeriodicalId\":213939,\"journal\":{\"name\":\"2019 12th Biomedical Engineering International Conference (BMEiCON)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 12th Biomedical Engineering International Conference (BMEiCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BMEiCON47515.2019.8990274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 12th Biomedical Engineering International Conference (BMEiCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEiCON47515.2019.8990274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrical Modeling of Dynamical Interaction among Intracranial Pressure, Intraocular Pressure, Cerebral Perfusion Pressure, and Arterial Blood Pressure
In case study, the dynamical behavior of various systems including intracranial pressure (ICP), cerebral perfusion pressure (CPP), intraocular pressure (IOP), arterial blood pressure (ABP), and blood flow (BF) are studied based on the equivalent electrical model. The healthy people from clinical data are used for study those behaviors. Resistor-Capacitance network is constructed to simulate ICP inside the skull, IOP of the retinal vessel, CPP in the skull. Moreover, ABP from the heart (85 - 120 mmHg) and Intraspinal Pressure (ISP) (50 - 60 mmHg) are applied as inputs to this model. The results show the value of ICP of normal state, IOP, and CPP in the skull are 5-15 mmHg, 20-35 mmHg, and 65-90 mmHg respectively. For the phase relationship among ABP, CPP, IOP, and ICP are synchronized. The differential phase between ABP and BF is 0.25 to 0.5 second where ABP waveform was leaded BF waveform. Our model is verified by clinical data from noninvasive measuring method. This model provides a clear explanation of the interaction behavior between ICP, CCP, IOP, ABP and BF of healthy individuals.