数据预处理

M. S. El-Nasr, Truong Huy Nguyen Dinh, Alessandro Canossa, Anders Drachen
{"title":"数据预处理","authors":"M. S. El-Nasr, Truong Huy Nguyen Dinh, Alessandro Canossa, Anders Drachen","doi":"10.1093/oso/9780192897879.003.0002","DOIUrl":null,"url":null,"abstract":"This chapter focuses on the process of cleaning data and preparing it for further processing. Specifically, the chapter discusses various techniques that you will use, including preprocessing, outlier identification, data consistency, and the normalization or standardization process, used to normalize your data. The chapter further discusses different measurement types and what methods can be used for which types. The chapter also discusses ways to deal with issues you may encounter with inconsistent or dirty data. The chapter takes a more practical approach by integrating several labs with actual game data to demonstrate how you can perform these steps on real game data.","PeriodicalId":137223,"journal":{"name":"Game Data Science","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Preprocessing\",\"authors\":\"M. S. El-Nasr, Truong Huy Nguyen Dinh, Alessandro Canossa, Anders Drachen\",\"doi\":\"10.1093/oso/9780192897879.003.0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter focuses on the process of cleaning data and preparing it for further processing. Specifically, the chapter discusses various techniques that you will use, including preprocessing, outlier identification, data consistency, and the normalization or standardization process, used to normalize your data. The chapter further discusses different measurement types and what methods can be used for which types. The chapter also discusses ways to deal with issues you may encounter with inconsistent or dirty data. The chapter takes a more practical approach by integrating several labs with actual game data to demonstrate how you can perform these steps on real game data.\",\"PeriodicalId\":137223,\"journal\":{\"name\":\"Game Data Science\",\"volume\":\"186 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Game Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780192897879.003.0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Game Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780192897879.003.0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章重点介绍清理数据并为进一步处理做准备的过程。具体来说,本章讨论了您将使用的各种技术,包括预处理,离群值识别,数据一致性以及用于规范化数据的规范化或标准化过程。本章进一步讨论了不同的测量类型以及哪些类型可以使用哪些方法。本章还讨论了处理可能遇到的不一致或脏数据问题的方法。本章采用了一种更实用的方法,将几个实验与实际游戏数据结合起来,演示如何在实际游戏数据上执行这些步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data Preprocessing
This chapter focuses on the process of cleaning data and preparing it for further processing. Specifically, the chapter discusses various techniques that you will use, including preprocessing, outlier identification, data consistency, and the normalization or standardization process, used to normalize your data. The chapter further discusses different measurement types and what methods can be used for which types. The chapter also discusses ways to deal with issues you may encounter with inconsistent or dirty data. The chapter takes a more practical approach by integrating several labs with actual game data to demonstrate how you can perform these steps on real game data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Game Data Science: An Introduction Advanced Sequence Analysis Clustering Methods in Game Data Science Sequence Analysis of Game Data Case Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1