基于能效的片上网络变化下最小化电压保护带的正式方法

Raghavendra Pradyumna Pothukuchi, Amin Ansari, Bhargava Gopireddy, J. Torrellas
{"title":"基于能效的片上网络变化下最小化电压保护带的正式方法","authors":"Raghavendra Pradyumna Pothukuchi, Amin Ansari, Bhargava Gopireddy, J. Torrellas","doi":"10.1109/PACT.2017.23","DOIUrl":null,"url":null,"abstract":"Networks-on-Chip (NoCs) in chip multiprocessors are prone to within-die process variation as they span the whole chip. To tolerate variation, their voltages (Vdd) carry over-provisioned guardbands. As a result, prior work has proposed to save energy by operating at reduced Vdd while occasionally suffering and fixing errors. Unfortunately, these proposals use heuristic controller designs that provide no error bounds guarantees.In this work, we develop a scheme that dynamically minimizes the Vdd of groups of routers in a variation-prone NoC using formal control-theoretic methods. The scheme, called Sthira, saves substantial energy while guaranteeing the stability and convergence of error rates. We also enhance the scheme with a low-cost secondary network that retransmits erroneous packets for higher energy efficiency. The enhanced scheme is called Sthira+. We evaluate Sthira and Sthira+ with simulations of NoCs with 64-100 routers. In an NoC with 8 routers per Vdd domain, our schemes reduce the average energy consumptionof the NoC by 27%; in a futuristic NoC with one router per Vdd domain, Sthira+ and Sthira reduce the average energy consumption by 36% and 32%, respectively. The performance impact is negligible. These are significant savings over the state-of-the-art. We conclude that formal control is essential, and that the cheaper Sthira is more cost-effective than Sthira+.","PeriodicalId":438103,"journal":{"name":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Sthira: A Formal Approach to Minimize Voltage Guardbands under Variation in Networks-on-Chip for Energy Efficiency\",\"authors\":\"Raghavendra Pradyumna Pothukuchi, Amin Ansari, Bhargava Gopireddy, J. Torrellas\",\"doi\":\"10.1109/PACT.2017.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Networks-on-Chip (NoCs) in chip multiprocessors are prone to within-die process variation as they span the whole chip. To tolerate variation, their voltages (Vdd) carry over-provisioned guardbands. As a result, prior work has proposed to save energy by operating at reduced Vdd while occasionally suffering and fixing errors. Unfortunately, these proposals use heuristic controller designs that provide no error bounds guarantees.In this work, we develop a scheme that dynamically minimizes the Vdd of groups of routers in a variation-prone NoC using formal control-theoretic methods. The scheme, called Sthira, saves substantial energy while guaranteeing the stability and convergence of error rates. We also enhance the scheme with a low-cost secondary network that retransmits erroneous packets for higher energy efficiency. The enhanced scheme is called Sthira+. We evaluate Sthira and Sthira+ with simulations of NoCs with 64-100 routers. In an NoC with 8 routers per Vdd domain, our schemes reduce the average energy consumptionof the NoC by 27%; in a futuristic NoC with one router per Vdd domain, Sthira+ and Sthira reduce the average energy consumption by 36% and 32%, respectively. The performance impact is negligible. These are significant savings over the state-of-the-art. We conclude that formal control is essential, and that the cheaper Sthira is more cost-effective than Sthira+.\",\"PeriodicalId\":438103,\"journal\":{\"name\":\"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACT.2017.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACT.2017.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

片上多处理器中的片上网络(noc)由于跨越整个芯片,容易发生模内工艺变化。为了容忍变化,它们的电压(Vdd)带有过度配置的保护带。因此,先前的工作建议在偶尔遭受和修复错误的情况下,通过降低Vdd运行来节省能源。不幸的是,这些建议使用启发式控制器设计,不提供错误边界保证。在这项工作中,我们开发了一种方案,该方案使用形式控制理论方法动态地最小化易发生变化的NoC中路由器组的Vdd。该方案被称为Sthira,在保证错误率的稳定性和收敛性的同时节省了大量的能量。我们还通过一个低成本的二次网络来增强该方案,该二次网络可以重传错误的数据包,从而提高能源效率。增强方案被称为Sthira+。我们通过模拟64-100路由器的noc来评估Sthira和Sthira+。在每个Vdd域有8个路由器的NoC中,我们的方案将NoC的平均能耗降低了27%;在未来的NoC中,每个Vdd域有一个路由器,Sthira+和Sthira分别减少了36%和32%的平均能耗。性能影响可以忽略不计。与最先进的技术相比,这是一个显著的节省。我们的结论是,正式的控制是必不可少的,并且便宜的Sthira比Sthira+更具成本效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sthira: A Formal Approach to Minimize Voltage Guardbands under Variation in Networks-on-Chip for Energy Efficiency
Networks-on-Chip (NoCs) in chip multiprocessors are prone to within-die process variation as they span the whole chip. To tolerate variation, their voltages (Vdd) carry over-provisioned guardbands. As a result, prior work has proposed to save energy by operating at reduced Vdd while occasionally suffering and fixing errors. Unfortunately, these proposals use heuristic controller designs that provide no error bounds guarantees.In this work, we develop a scheme that dynamically minimizes the Vdd of groups of routers in a variation-prone NoC using formal control-theoretic methods. The scheme, called Sthira, saves substantial energy while guaranteeing the stability and convergence of error rates. We also enhance the scheme with a low-cost secondary network that retransmits erroneous packets for higher energy efficiency. The enhanced scheme is called Sthira+. We evaluate Sthira and Sthira+ with simulations of NoCs with 64-100 routers. In an NoC with 8 routers per Vdd domain, our schemes reduce the average energy consumptionof the NoC by 27%; in a futuristic NoC with one router per Vdd domain, Sthira+ and Sthira reduce the average energy consumption by 36% and 32%, respectively. The performance impact is negligible. These are significant savings over the state-of-the-art. We conclude that formal control is essential, and that the cheaper Sthira is more cost-effective than Sthira+.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
POSTER: Exploiting Approximations for Energy/Quality Tradeoffs in Service-Based Applications End-to-End Deep Learning of Optimization Heuristics Large Scale Data Clustering Using Memristive k-Median Computation DrMP: Mixed Precision-Aware DRAM for High Performance Approximate and Precise Computing POSTER: Improving Datacenter Efficiency Through Partitioning-Aware Scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1