基于新黎曼理论和贝叶斯网络的音乐转换研究

Takuto Machida, A. Ito, Koji Mikami
{"title":"基于新黎曼理论和贝叶斯网络的音乐转换研究","authors":"Takuto Machida, A. Ito, Koji Mikami","doi":"10.1109/NicoInt55861.2022.00032","DOIUrl":null,"url":null,"abstract":"In this study, two theoretical studies were combined. On the music theory side, we used Neo-Riemannian theory to analyze the music, and Bayesian networks on the mathematics side. R was used to construct the Bayesian network. Using these two methods, we have developed a mathematical model of musical transitions, and have also attempted to create music based on the probability of chord progressions.","PeriodicalId":328114,"journal":{"name":"2022 Nicograph International (NicoInt)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Music Transition Using Neo- Riemannian Theory and Bayesian Network\",\"authors\":\"Takuto Machida, A. Ito, Koji Mikami\",\"doi\":\"10.1109/NicoInt55861.2022.00032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, two theoretical studies were combined. On the music theory side, we used Neo-Riemannian theory to analyze the music, and Bayesian networks on the mathematics side. R was used to construct the Bayesian network. Using these two methods, we have developed a mathematical model of musical transitions, and have also attempted to create music based on the probability of chord progressions.\",\"PeriodicalId\":328114,\"journal\":{\"name\":\"2022 Nicograph International (NicoInt)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Nicograph International (NicoInt)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NicoInt55861.2022.00032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Nicograph International (NicoInt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NicoInt55861.2022.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究将两种理论研究相结合。在音乐理论方面,我们使用新黎曼理论来分析音乐,在数学方面使用贝叶斯网络。使用R来构建贝叶斯网络。使用这两种方法,我们开发了一个音乐过渡的数学模型,并尝试基于和弦进行的概率来创作音乐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on Music Transition Using Neo- Riemannian Theory and Bayesian Network
In this study, two theoretical studies were combined. On the music theory side, we used Neo-Riemannian theory to analyze the music, and Bayesian networks on the mathematics side. R was used to construct the Bayesian network. Using these two methods, we have developed a mathematical model of musical transitions, and have also attempted to create music based on the probability of chord progressions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Examination of Rounder Deformation Optimization Combining As-Rigid-As-Possible and Spherical Feature Interactive Demonstration of Dynamic Music Composition Based on Cohn's “Voice-Leading Zones” Theory Someone to meet you: Introspective Encounter with the Presence of Someone from Uncertain Spatial Void Visual Effect System for Projection Mapping with Japanese Drum Performance Experiments And Discussions On Vision Transformer (ViT) Parameters For Object Tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1