确定多发性硬化症惯性步态特征的生理意义

Sriram Raju Dandu, M. Engelhard, M. Goldman, J. Lach
{"title":"确定多发性硬化症惯性步态特征的生理意义","authors":"Sriram Raju Dandu, M. Engelhard, M. Goldman, J. Lach","doi":"10.1109/BSN.2016.7516271","DOIUrl":null,"url":null,"abstract":"Gait impairment in Multiple Sclerosis (MS) can result from imbalance, physical fatigue, weakness, and other symptoms. Walking speed is the primary measure of gait impairment used by clinical researchers, but inertial gait features from body-worn sensors have been proven to add clinical value. This paper seeks to understand the physiologic significance of two such features in MS. Both features are computed using the dynamic time warping (DTW) algorithm: the “DTW Score” is based on the usual DTW distance, and the “Warp Score” is based on the warping length. Using linear regression and stepwise regression models, the relationship between these features and several gait-related MS symptoms is analyzed. Results show that the DTW Score and Warp Score have distinct physiologic significance in MS compared to walking speed, and these features may also be useful for walking assessment in a wide range of clinical contexts.","PeriodicalId":205735,"journal":{"name":"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Determining physiological significance of inertial gait features in multiple sclerosis\",\"authors\":\"Sriram Raju Dandu, M. Engelhard, M. Goldman, J. Lach\",\"doi\":\"10.1109/BSN.2016.7516271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gait impairment in Multiple Sclerosis (MS) can result from imbalance, physical fatigue, weakness, and other symptoms. Walking speed is the primary measure of gait impairment used by clinical researchers, but inertial gait features from body-worn sensors have been proven to add clinical value. This paper seeks to understand the physiologic significance of two such features in MS. Both features are computed using the dynamic time warping (DTW) algorithm: the “DTW Score” is based on the usual DTW distance, and the “Warp Score” is based on the warping length. Using linear regression and stepwise regression models, the relationship between these features and several gait-related MS symptoms is analyzed. Results show that the DTW Score and Warp Score have distinct physiologic significance in MS compared to walking speed, and these features may also be useful for walking assessment in a wide range of clinical contexts.\",\"PeriodicalId\":205735,\"journal\":{\"name\":\"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2016.7516271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2016.7516271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

多发性硬化症(MS)的步态障碍可由失衡、身体疲劳、虚弱和其他症状引起。步行速度是临床研究人员用来衡量步态障碍的主要指标,但身体穿戴传感器的惯性步态特征已被证明具有临床价值。本文试图理解ms中这两个特征的生理意义。这两个特征都使用动态时间翘曲(DTW)算法计算:“DTW分数”基于通常的DTW距离,“翘曲分数”基于翘曲长度。利用线性回归和逐步回归模型,分析了这些特征与几种步态相关的MS症状之间的关系。结果表明,与步行速度相比,DTW评分和Warp评分在MS中具有明显的生理意义,这些特征也可能在广泛的临床环境中用于步行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determining physiological significance of inertial gait features in multiple sclerosis
Gait impairment in Multiple Sclerosis (MS) can result from imbalance, physical fatigue, weakness, and other symptoms. Walking speed is the primary measure of gait impairment used by clinical researchers, but inertial gait features from body-worn sensors have been proven to add clinical value. This paper seeks to understand the physiologic significance of two such features in MS. Both features are computed using the dynamic time warping (DTW) algorithm: the “DTW Score” is based on the usual DTW distance, and the “Warp Score” is based on the warping length. Using linear regression and stepwise regression models, the relationship between these features and several gait-related MS symptoms is analyzed. Results show that the DTW Score and Warp Score have distinct physiologic significance in MS compared to walking speed, and these features may also be useful for walking assessment in a wide range of clinical contexts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Edemeter: Wearable and continuous fluid retention monitoring Probabilistic sensor network design Tracking body core temperature in military thermal environments: An extended Kalman filter approach A multimodal sensor system for automated marmoset behavioral analysis Accurate personal ultraviolet dose estimation with multiple wearable sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1