化学元素,矿物和岩石在一个单一的三维模型

M. M. Labushev, T. M. Labushev, A. Khokhlov
{"title":"化学元素,矿物和岩石在一个单一的三维模型","authors":"M. M. Labushev, T. M. Labushev, A. Khokhlov","doi":"10.21285/2686-9993-2023-46-1-97-124.","DOIUrl":null,"url":null,"abstract":"The purpose of the study is refining of the proposed earlier unified three-dimensional model for the positioning of chemical elements, minerals, and rocks in the earth's crust, as well as working out its description terminology and model system properties specification. The research methods included the logical and mathematical analysis of the model based on atomic weights of chemical elements, their valences and electronegativity, as well as on the atomic weights of chemical elements present in the composition of minerals and calculation of multidimensional proportionality indexes for each of given characteristics. The methods were used for further development of the previously introduced assumption that within the three-dimensional model minerals are arranged in the ascending order of the index of multidimensional proportionality of atomic weights of chemical elements in their composition, similarly to the way the chemical elements are positioned in the model according to the increase of their atomic weights. Both rocks and minerals are arranged in the ascending order of this index, whereas rocks correspond to a certain mineral in terms of the multidimensional proportionality index. As a result of the study, a general analysis of the system properties of vertical spatial groups of chemical elements of the model was carried out with groups being divided into two types depending on the presence of a gas or a solid chemical element in the first position. The variation patterns of chemical element valencies and electronegativity were studied in these spatial groups. Also, the analyses of multidimensional data were performed for the elements of these groups. The values of the multidimensional index were calculated for the first 760 minerals using the Agemarker open source program. The analysis of multivariate data confirmed the division of groups into two types. Having analyzed their mutual arrangement, the authors suggested the existence of gas channels of chemical element migration and determined possible migration paths of chemical elements in the three-dimensional model under the formation of some minerals. The relative position of some fields was considered in order to confirm the spatial characteristics of the three-dimensional model. The authors have introduced a new paradigm of geological research positioning minerals and rocks in a three-dimensional model and determining possible migration paths of chemical elements when minerals and rocks are formed.","PeriodicalId":128080,"journal":{"name":"Earth sciences and subsoil use","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical elements, minerals and rocks in a single three-dimensional model\",\"authors\":\"M. M. Labushev, T. M. Labushev, A. Khokhlov\",\"doi\":\"10.21285/2686-9993-2023-46-1-97-124.\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of the study is refining of the proposed earlier unified three-dimensional model for the positioning of chemical elements, minerals, and rocks in the earth's crust, as well as working out its description terminology and model system properties specification. The research methods included the logical and mathematical analysis of the model based on atomic weights of chemical elements, their valences and electronegativity, as well as on the atomic weights of chemical elements present in the composition of minerals and calculation of multidimensional proportionality indexes for each of given characteristics. The methods were used for further development of the previously introduced assumption that within the three-dimensional model minerals are arranged in the ascending order of the index of multidimensional proportionality of atomic weights of chemical elements in their composition, similarly to the way the chemical elements are positioned in the model according to the increase of their atomic weights. Both rocks and minerals are arranged in the ascending order of this index, whereas rocks correspond to a certain mineral in terms of the multidimensional proportionality index. As a result of the study, a general analysis of the system properties of vertical spatial groups of chemical elements of the model was carried out with groups being divided into two types depending on the presence of a gas or a solid chemical element in the first position. The variation patterns of chemical element valencies and electronegativity were studied in these spatial groups. Also, the analyses of multidimensional data were performed for the elements of these groups. The values of the multidimensional index were calculated for the first 760 minerals using the Agemarker open source program. The analysis of multivariate data confirmed the division of groups into two types. Having analyzed their mutual arrangement, the authors suggested the existence of gas channels of chemical element migration and determined possible migration paths of chemical elements in the three-dimensional model under the formation of some minerals. The relative position of some fields was considered in order to confirm the spatial characteristics of the three-dimensional model. The authors have introduced a new paradigm of geological research positioning minerals and rocks in a three-dimensional model and determining possible migration paths of chemical elements when minerals and rocks are formed.\",\"PeriodicalId\":128080,\"journal\":{\"name\":\"Earth sciences and subsoil use\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth sciences and subsoil use\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21285/2686-9993-2023-46-1-97-124.\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth sciences and subsoil use","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21285/2686-9993-2023-46-1-97-124.","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是对先前提出的地壳化学元素、矿物和岩石定位统一三维模型进行细化,并制定其描述术语和模型系统属性规范。研究方法包括根据化学元素的原子量、它们的价和电负性,以及矿物组成中存在的化学元素的原子量,对模型进行逻辑和数学分析,并计算每一给定特征的多维比例指数。这些方法被用于进一步发展先前引入的假设,即在三维模型中,矿物是按照其组成中化学元素原子量的多维比例指数的升序排列的,类似于化学元素在模型中根据其原子量的增加来定位的方式。岩石和矿物均按该指数的升序排列,而岩石则按多维比例指数对应某种矿物。作为研究的结果,对该模型的化学元素的垂直空间群的系统特性进行了一般分析,根据在第一位置存在气体或固体化学元素,将群分为两类。研究了这些空间群中化学元素价和电负性的变化规律。此外,还对这些组的元素进行了多维数据分析。多维指数的值是使用agemmarker开源程序计算的前760种矿物。多变量数据分析证实了群体分为两类。通过分析它们的相互排列,提出了化学元素运移的气体通道的存在,并在某些矿物形成的三维模型中确定了化学元素可能的运移路径。为了确定三维模型的空间特征,考虑了一些场的相对位置。作者介绍了一种新的地质研究范式,将矿物和岩石定位在三维模型中,并确定矿物和岩石形成时化学元素可能的迁移路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chemical elements, minerals and rocks in a single three-dimensional model
The purpose of the study is refining of the proposed earlier unified three-dimensional model for the positioning of chemical elements, minerals, and rocks in the earth's crust, as well as working out its description terminology and model system properties specification. The research methods included the logical and mathematical analysis of the model based on atomic weights of chemical elements, their valences and electronegativity, as well as on the atomic weights of chemical elements present in the composition of minerals and calculation of multidimensional proportionality indexes for each of given characteristics. The methods were used for further development of the previously introduced assumption that within the three-dimensional model minerals are arranged in the ascending order of the index of multidimensional proportionality of atomic weights of chemical elements in their composition, similarly to the way the chemical elements are positioned in the model according to the increase of their atomic weights. Both rocks and minerals are arranged in the ascending order of this index, whereas rocks correspond to a certain mineral in terms of the multidimensional proportionality index. As a result of the study, a general analysis of the system properties of vertical spatial groups of chemical elements of the model was carried out with groups being divided into two types depending on the presence of a gas or a solid chemical element in the first position. The variation patterns of chemical element valencies and electronegativity were studied in these spatial groups. Also, the analyses of multidimensional data were performed for the elements of these groups. The values of the multidimensional index were calculated for the first 760 minerals using the Agemarker open source program. The analysis of multivariate data confirmed the division of groups into two types. Having analyzed their mutual arrangement, the authors suggested the existence of gas channels of chemical element migration and determined possible migration paths of chemical elements in the three-dimensional model under the formation of some minerals. The relative position of some fields was considered in order to confirm the spatial characteristics of the three-dimensional model. The authors have introduced a new paradigm of geological research positioning minerals and rocks in a three-dimensional model and determining possible migration paths of chemical elements when minerals and rocks are formed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The role and significance of geological heterogeneity in the formation of limestone productivity in the Famennian stage of the South Tatar arch Petroelastic modeling of Vereiskian and Bashkirian deposits on example of an oil field in the Republic of Tatarstan Influence of heterogeneity indicators on productivity index prediction efficiency (on example of carbonate reservoir deposits in the Ural-Volga region) Petrophysical taxa of diamond deposit of Komsomolskaya kimberlite pipe (Yakutsk diamondiferous province) Using photogrammetry to determine quarry slope stability coefficient
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1