IsaNet:用于验证安全数据平面协议的框架

Tobias Klenze, C. Sprenger, D. Basin
{"title":"IsaNet:用于验证安全数据平面协议的框架","authors":"Tobias Klenze, C. Sprenger, D. Basin","doi":"10.3233/jcs-220021","DOIUrl":null,"url":null,"abstract":"Today’s Internet is built on decades-old networking protocols that lack scalability, reliability and security. In response, the networking community has developed path-aware Internet architectures that solve these problems while simultaneously empowering end hosts to exert some control on their packets’ route through the network. In these architectures, autonomous systems authorize forwarding paths in accordance with their routing policies, and protect these paths using cryptographic authenticators. For each packet, the sending end host selects an authorized path and embeds it and its authenticators in the packet header. This allows routers to efficiently determine how to forward the packet. The central security property of the data plane, i.e., of forwarding, is that packets can only travel along authorized paths. This property, which we call path authorization, protects the routing policies of autonomous systems from malicious senders. The fundamental role of packet forwarding in the Internet’s ecosystem and the complexity of the authentication mechanisms employed call for a formal analysis. We develop IsaNet, a parameterized verification framework for data plane protocols in Isabelle/HOL. We first formulate an abstract model without an attacker for which we prove path authorization. We then refine this model by introducing a Dolev–Yao attacker and by protecting authorized paths using (generic) cryptographic validation fields. This model is parametrized by the path authorization mechanism and assumes five simple verification conditions. We propose novel attacker models and different sets of assumptions on the underlying routing protocol. We validate our framework by instantiating it with nine concrete protocols variants and prove that they each satisfy the verification conditions (and hence path authorization). The invariants needed for the security proof are proven in the parametrized model instead of the instance models. Our framework thus supports low-effort security proofs for data plane protocols. In contrast to what could be achieved with state-of-the-art automated protocol verifiers, our results hold for arbitrary network topologies and sets of authorized paths.","PeriodicalId":142580,"journal":{"name":"J. Comput. Secur.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IsaNet: A framework for verifying secure data plane protocols\",\"authors\":\"Tobias Klenze, C. Sprenger, D. Basin\",\"doi\":\"10.3233/jcs-220021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today’s Internet is built on decades-old networking protocols that lack scalability, reliability and security. In response, the networking community has developed path-aware Internet architectures that solve these problems while simultaneously empowering end hosts to exert some control on their packets’ route through the network. In these architectures, autonomous systems authorize forwarding paths in accordance with their routing policies, and protect these paths using cryptographic authenticators. For each packet, the sending end host selects an authorized path and embeds it and its authenticators in the packet header. This allows routers to efficiently determine how to forward the packet. The central security property of the data plane, i.e., of forwarding, is that packets can only travel along authorized paths. This property, which we call path authorization, protects the routing policies of autonomous systems from malicious senders. The fundamental role of packet forwarding in the Internet’s ecosystem and the complexity of the authentication mechanisms employed call for a formal analysis. We develop IsaNet, a parameterized verification framework for data plane protocols in Isabelle/HOL. We first formulate an abstract model without an attacker for which we prove path authorization. We then refine this model by introducing a Dolev–Yao attacker and by protecting authorized paths using (generic) cryptographic validation fields. This model is parametrized by the path authorization mechanism and assumes five simple verification conditions. We propose novel attacker models and different sets of assumptions on the underlying routing protocol. We validate our framework by instantiating it with nine concrete protocols variants and prove that they each satisfy the verification conditions (and hence path authorization). The invariants needed for the security proof are proven in the parametrized model instead of the instance models. Our framework thus supports low-effort security proofs for data plane protocols. In contrast to what could be achieved with state-of-the-art automated protocol verifiers, our results hold for arbitrary network topologies and sets of authorized paths.\",\"PeriodicalId\":142580,\"journal\":{\"name\":\"J. Comput. Secur.\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Comput. Secur.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jcs-220021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Comput. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcs-220021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

今天的互联网建立在几十年前的网络协议之上,缺乏可扩展性、可靠性和安全性。作为回应,网络社区开发了路径感知的互联网架构来解决这些问题,同时授权终端主机对其数据包通过网络的路由施加一些控制。在这些体系结构中,自治系统根据其路由策略授权转发路径,并使用加密身份验证器保护这些路径。对于每个数据包,发送端主机选择一个授权路径,并将其及其验证者嵌入到数据包头中。这允许路由器有效地决定如何转发数据包。数据平面(即转发)的核心安全属性是数据包只能沿着授权的路径传输。这个属性,我们称之为路径授权,可以保护自治系统的路由策略免受恶意发送者的攻击。数据包转发在互联网生态系统中的基本作用以及所采用的身份验证机制的复杂性需要进行正式分析。我们在Isabelle/HOL中开发了IsaNet,一个数据平面协议的参数化验证框架。我们首先制定了一个没有攻击者的抽象模型,并为其证明了路径授权。然后,我们通过引入Dolev-Yao攻击者和使用(通用)加密验证字段保护授权路径来改进该模型。该模型由路径授权机制参数化,并假设了五个简单的验证条件。我们提出了新的攻击者模型和对底层路由协议的不同假设集。我们通过使用9个具体的协议变体实例化我们的框架来验证它,并证明它们每个都满足验证条件(因此路径授权)。安全性证明所需的不变量在参数化模型中证明,而不是在实例模型中证明。因此,我们的框架支持数据平面协议的低工作量安全证明。与使用最先进的自动协议验证器可以实现的结果相比,我们的结果适用于任意网络拓扑和授权路径集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IsaNet: A framework for verifying secure data plane protocols
Today’s Internet is built on decades-old networking protocols that lack scalability, reliability and security. In response, the networking community has developed path-aware Internet architectures that solve these problems while simultaneously empowering end hosts to exert some control on their packets’ route through the network. In these architectures, autonomous systems authorize forwarding paths in accordance with their routing policies, and protect these paths using cryptographic authenticators. For each packet, the sending end host selects an authorized path and embeds it and its authenticators in the packet header. This allows routers to efficiently determine how to forward the packet. The central security property of the data plane, i.e., of forwarding, is that packets can only travel along authorized paths. This property, which we call path authorization, protects the routing policies of autonomous systems from malicious senders. The fundamental role of packet forwarding in the Internet’s ecosystem and the complexity of the authentication mechanisms employed call for a formal analysis. We develop IsaNet, a parameterized verification framework for data plane protocols in Isabelle/HOL. We first formulate an abstract model without an attacker for which we prove path authorization. We then refine this model by introducing a Dolev–Yao attacker and by protecting authorized paths using (generic) cryptographic validation fields. This model is parametrized by the path authorization mechanism and assumes five simple verification conditions. We propose novel attacker models and different sets of assumptions on the underlying routing protocol. We validate our framework by instantiating it with nine concrete protocols variants and prove that they each satisfy the verification conditions (and hence path authorization). The invariants needed for the security proof are proven in the parametrized model instead of the instance models. Our framework thus supports low-effort security proofs for data plane protocols. In contrast to what could be achieved with state-of-the-art automated protocol verifiers, our results hold for arbitrary network topologies and sets of authorized paths.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data privacy in the Internet of Things based on anonymization: A review A mutation-based approach for the formal and automated analysis of security ceremonies StegEdge: Privacy protection of unknown sensitive attributes in edge intelligence via deception IsaNet: A framework for verifying secure data plane protocols A review on cloud security issues and solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1