新闻视频中音频信息的特征提取与分类

Yu Song, Wenhong Wang, Fengjuan Guo
{"title":"新闻视频中音频信息的特征提取与分类","authors":"Yu Song, Wenhong Wang, Fengjuan Guo","doi":"10.1109/ICWAPR.2009.5207452","DOIUrl":null,"url":null,"abstract":"Feature extraction and analysis are the foundation of audio classification. At first, audio features are analyzed deeply, including short-time energy, zero-crossing rate, bandwidth, low short-time energy ratio, high zero-crossing rate ratio, and noise rate. Secondly a new audio classification method for news video is proposed based on the decision tree method, and then divides audio information into four classes: silence, pure speech, music, non-pure speech. The experiment results show that the selected features are effective for audio classification in news video, and the classification accuracy is reasonable.","PeriodicalId":424264,"journal":{"name":"2009 International Conference on Wavelet Analysis and Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Feature extraction and classification for audio information in news video\",\"authors\":\"Yu Song, Wenhong Wang, Fengjuan Guo\",\"doi\":\"10.1109/ICWAPR.2009.5207452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature extraction and analysis are the foundation of audio classification. At first, audio features are analyzed deeply, including short-time energy, zero-crossing rate, bandwidth, low short-time energy ratio, high zero-crossing rate ratio, and noise rate. Secondly a new audio classification method for news video is proposed based on the decision tree method, and then divides audio information into four classes: silence, pure speech, music, non-pure speech. The experiment results show that the selected features are effective for audio classification in news video, and the classification accuracy is reasonable.\",\"PeriodicalId\":424264,\"journal\":{\"name\":\"2009 International Conference on Wavelet Analysis and Pattern Recognition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Wavelet Analysis and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2009.5207452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2009.5207452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

特征提取和分析是音频分类的基础。首先,对音频特征进行了深入分析,包括短时能量、过零率、带宽、短时能量比低、过零率比高、噪声率等。其次,提出了一种新的基于决策树方法的新闻视频音频分类方法,并将音频信息分为无声、纯语音、音乐、非纯语音四类。实验结果表明,所选特征对新闻视频中的音频分类是有效的,分类精度合理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature extraction and classification for audio information in news video
Feature extraction and analysis are the foundation of audio classification. At first, audio features are analyzed deeply, including short-time energy, zero-crossing rate, bandwidth, low short-time energy ratio, high zero-crossing rate ratio, and noise rate. Secondly a new audio classification method for news video is proposed based on the decision tree method, and then divides audio information into four classes: silence, pure speech, music, non-pure speech. The experiment results show that the selected features are effective for audio classification in news video, and the classification accuracy is reasonable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Laplacian Support Vector Machines Intelligent computerized fabric texture recognition system by using Grey-based neural fuzzy clustering A new cooperative algorithm for signal detection Improved algorithm of the Back Propagation neural network and its application in fault diagnosis of air-cooling condenser HSICT: A method for romoving highlight and shading in color image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1