IBM z13上的四精度浮点

C. Lichtenau, S. Carlough, S. M. Müller
{"title":"IBM z13上的四精度浮点","authors":"C. Lichtenau, S. Carlough, S. M. Müller","doi":"10.1109/ARITH.2016.26","DOIUrl":null,"url":null,"abstract":"When operating on a rapidly increasing amount of data, business analytics applications become sensitive to rounding errors, and profit from the higher stability and faster convergence of quad precision floating-point (FP-QP) arithmetic. The IBM z13TM supports this emerging trend around Big Data with an outstanding FP-QP performance. The paper details the vector and floating-point unit of IBM z13TM, with special focus on binary FP-QP. Except for divide and square root, these instructions are executed in the decimal engine. To operate such an 8-cycle decimal and quad precision pipeline at 5GHz required innovation around exponent handling, normalization, and rounding.","PeriodicalId":145448,"journal":{"name":"2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Quad Precision Floating Point on the IBM z13\",\"authors\":\"C. Lichtenau, S. Carlough, S. M. Müller\",\"doi\":\"10.1109/ARITH.2016.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When operating on a rapidly increasing amount of data, business analytics applications become sensitive to rounding errors, and profit from the higher stability and faster convergence of quad precision floating-point (FP-QP) arithmetic. The IBM z13TM supports this emerging trend around Big Data with an outstanding FP-QP performance. The paper details the vector and floating-point unit of IBM z13TM, with special focus on binary FP-QP. Except for divide and square root, these instructions are executed in the decimal engine. To operate such an 8-cycle decimal and quad precision pipeline at 5GHz required innovation around exponent handling, normalization, and rounding.\",\"PeriodicalId\":145448,\"journal\":{\"name\":\"2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.2016.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.2016.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

当对快速增长的数据量进行操作时,业务分析应用程序对舍入误差变得敏感,并从四精度浮点(FP-QP)算法的更高稳定性和更快的收敛性中获益。IBM z13TM以出色的FP-QP性能支持这一围绕大数据的新兴趋势。本文详细介绍了IBM z13TM的矢量和浮点单元,重点介绍了二进制FP-QP。除除法和平方根外,这些指令都在十进制引擎中执行。要在5GHz下运行这样的8周期十进制和四精度管道,需要在指数处理、归一化和舍入方面进行创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quad Precision Floating Point on the IBM z13
When operating on a rapidly increasing amount of data, business analytics applications become sensitive to rounding errors, and profit from the higher stability and faster convergence of quad precision floating-point (FP-QP) arithmetic. The IBM z13TM supports this emerging trend around Big Data with an outstanding FP-QP performance. The paper details the vector and floating-point unit of IBM z13TM, with special focus on binary FP-QP. Except for divide and square root, these instructions are executed in the decimal engine. To operate such an 8-cycle decimal and quad precision pipeline at 5GHz required innovation around exponent handling, normalization, and rounding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accuracy and Performance Trade-Offs of Logarithmic Number Units in Multi-Core Clusters Recovering Numerical Reproducibility in Hydrodynamic Simulations Multi-fault Attack Detection for RNS Cryptographic Architecture Accelerating Big Integer Arithmetic Using Intel IFMA Extensions A CRC-Based Concurrent Fault Detection Architecture for Galois/Counter Mode (GCM)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1