使用LBC格式压缩医学图像的比较研究

Ildiko-Angelica Szoke, V. Stoicu-Tivadar, D. Lungeanu
{"title":"使用LBC格式压缩医学图像的比较研究","authors":"Ildiko-Angelica Szoke, V. Stoicu-Tivadar, D. Lungeanu","doi":"10.1109/SAMI.2017.7880285","DOIUrl":null,"url":null,"abstract":"The article performs a comparative study between the image compression technique Local Binary Compressed format (LBC) proposed by the authors [11] and the standard image compression techniques used today (BMP, JPEG, PNG and GIF). The study is carried out for large medical images that need to be stored for longer periods of time. In the study, the most common types of medical images used are: X-rays and ultrasounds images. The effective representation of image format LBC is proven using an image quality index type, the Structural Similarity Index (SSIM).","PeriodicalId":105599,"journal":{"name":"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"264 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative study of using the LBC format for compressing medical images\",\"authors\":\"Ildiko-Angelica Szoke, V. Stoicu-Tivadar, D. Lungeanu\",\"doi\":\"10.1109/SAMI.2017.7880285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article performs a comparative study between the image compression technique Local Binary Compressed format (LBC) proposed by the authors [11] and the standard image compression techniques used today (BMP, JPEG, PNG and GIF). The study is carried out for large medical images that need to be stored for longer periods of time. In the study, the most common types of medical images used are: X-rays and ultrasounds images. The effective representation of image format LBC is proven using an image quality index type, the Structural Similarity Index (SSIM).\",\"PeriodicalId\":105599,\"journal\":{\"name\":\"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"volume\":\"264 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMI.2017.7880285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI.2017.7880285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对[11]提出的局部二进制压缩格式(Local Binary Compressed format, LBC)图像压缩技术与目前使用的标准图像压缩技术(BMP、JPEG、PNG和GIF)进行了比较研究。这项研究是针对需要长时间存储的大型医学图像进行的。在这项研究中,最常用的医学图像类型是:x射线和超声波图像。使用图像质量索引类型结构相似指数(SSIM)证明了图像格式LBC的有效表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comparative study of using the LBC format for compressing medical images
The article performs a comparative study between the image compression technique Local Binary Compressed format (LBC) proposed by the authors [11] and the standard image compression techniques used today (BMP, JPEG, PNG and GIF). The study is carried out for large medical images that need to be stored for longer periods of time. In the study, the most common types of medical images used are: X-rays and ultrasounds images. The effective representation of image format LBC is proven using an image quality index type, the Structural Similarity Index (SSIM).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-organising symbolic aggregate approximation for real-time fault detection and diagnosis in transient dynamic systems Robot navigation in unknown environment using fuzzy logic Artificial neural network based IDS Video-based measurement system of parameters of the pyrotechnic effect Building environment analysis based on clustering methods from sensor data on top of the Hadoop platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1