磁导微纤维制备多孔细胞支架

Xingfu Li, Qing Shi, Huaping Wang, Tao Sun, Jianing Li, Ning Yu, Qiang Huang, T. Fukuda
{"title":"磁导微纤维制备多孔细胞支架","authors":"Xingfu Li, Qing Shi, Huaping Wang, Tao Sun, Jianing Li, Ning Yu, Qiang Huang, T. Fukuda","doi":"10.1109/ICMA.2016.7558945","DOIUrl":null,"url":null,"abstract":"As one of the most promising substitutes for regenerative medicine, the pore cell scaffold attracts great attentions in tissue engineering recently. In this study, we apply microfiber to assemble this kind of porous structure based on magnetically-guided manipulation. The microfiber is fabricated by biocompatible and biodegradable alginate solution inside a microfluidic device. To feasibly manipulate the microfiber, homogeneous magnetic nanoparticles are encapsulated into the alginate solution to improve controllability. Simultaneously, an external magnetic force generated by a round permanent magnet is provided to attract the microfibers on a magnetized device composed by pure iron wire arrays and wax. To provide a bionic environment, the magnetized device has been fabricated to allow the generation of optimal pore structure with submillimeter size and high density. As preliminary results, we have achieved to fabricate a one-layer cell scaffold through magnetically-guided micromanipulation.","PeriodicalId":260197,"journal":{"name":"2016 IEEE International Conference on Mechatronics and Automation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetically-guided manipulation of microfiber for fabrication of porous cell scaffold\",\"authors\":\"Xingfu Li, Qing Shi, Huaping Wang, Tao Sun, Jianing Li, Ning Yu, Qiang Huang, T. Fukuda\",\"doi\":\"10.1109/ICMA.2016.7558945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As one of the most promising substitutes for regenerative medicine, the pore cell scaffold attracts great attentions in tissue engineering recently. In this study, we apply microfiber to assemble this kind of porous structure based on magnetically-guided manipulation. The microfiber is fabricated by biocompatible and biodegradable alginate solution inside a microfluidic device. To feasibly manipulate the microfiber, homogeneous magnetic nanoparticles are encapsulated into the alginate solution to improve controllability. Simultaneously, an external magnetic force generated by a round permanent magnet is provided to attract the microfibers on a magnetized device composed by pure iron wire arrays and wax. To provide a bionic environment, the magnetized device has been fabricated to allow the generation of optimal pore structure with submillimeter size and high density. As preliminary results, we have achieved to fabricate a one-layer cell scaffold through magnetically-guided micromanipulation.\",\"PeriodicalId\":260197,\"journal\":{\"name\":\"2016 IEEE International Conference on Mechatronics and Automation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Mechatronics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA.2016.7558945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Mechatronics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA.2016.7558945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

孔细胞支架作为再生医学最有前途的替代品之一,近年来在组织工程领域受到广泛关注。在这项研究中,我们利用超细纤维来组装这种基于磁引导操作的多孔结构。微流控装置内的海藻酸盐溶液具有生物相容性和可生物降解性。为了切实可行地操纵微纤维,均匀磁性纳米颗粒被封装到海藻酸盐溶液中,以提高可控性。同时,提供由圆形永磁体产生的外磁力来吸引由纯铁丝阵列和蜡组成的磁化装置上的微纤维。为了提供仿生环境,该磁化装置已被制造,以允许产生亚毫米尺寸和高密度的最佳孔隙结构。作为初步结果,我们已经通过磁引导微操作实现了单层细胞支架的制备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magnetically-guided manipulation of microfiber for fabrication of porous cell scaffold
As one of the most promising substitutes for regenerative medicine, the pore cell scaffold attracts great attentions in tissue engineering recently. In this study, we apply microfiber to assemble this kind of porous structure based on magnetically-guided manipulation. The microfiber is fabricated by biocompatible and biodegradable alginate solution inside a microfluidic device. To feasibly manipulate the microfiber, homogeneous magnetic nanoparticles are encapsulated into the alginate solution to improve controllability. Simultaneously, an external magnetic force generated by a round permanent magnet is provided to attract the microfibers on a magnetized device composed by pure iron wire arrays and wax. To provide a bionic environment, the magnetized device has been fabricated to allow the generation of optimal pore structure with submillimeter size and high density. As preliminary results, we have achieved to fabricate a one-layer cell scaffold through magnetically-guided micromanipulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic lane tracking system based on multi-model fuzzy controller Automatic path and trajectory planning for laser cladding robot based on CAD Analysis of dynamic characteristics of rugged vessel in the process of hepatic perfusion A simulation method for X-ray pulsar signal based on Monte Carlo Study of audiovisual asynchrony signal processing: Robot recognition system of different ages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1