{"title":"基于深度q网络的股票投资组合配置风险感知方法","authors":"Jacopo Fior, Luca Cagliero","doi":"10.1109/AICT55583.2022.10013578","DOIUrl":null,"url":null,"abstract":"Reinforcement Learning techniques have shown a great potential in the active allocation of stock portfolios. However, state-of-the-art solutions show limited stability and fairly high sensitivity to volatile market conditions. To tackle these issues, this paper presents a new risk-aware approach based on Deep Q-learning Networks. It leverages Quantile Regression DQNs to mitigate the underlying market risks and an action branching architecture to effectively handle high-dimensional stock spaces. Furthermore, it also introduces noise perturbations to the network’s weights aimed at self-tuning the degree of exploration for each input dimension. Based on the empirical simulations, which were carried out on the Dow Jones-30 stocks over a three-year period, the proposed system performs better than state-of-the-art RL solutions in terms of cumulative return, stability, and sharpe ratio.","PeriodicalId":441475,"journal":{"name":"2022 IEEE 16th International Conference on Application of Information and Communication Technologies (AICT)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A risk-aware approach to stock portfolio allocation based on Deep Q-Networks\",\"authors\":\"Jacopo Fior, Luca Cagliero\",\"doi\":\"10.1109/AICT55583.2022.10013578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reinforcement Learning techniques have shown a great potential in the active allocation of stock portfolios. However, state-of-the-art solutions show limited stability and fairly high sensitivity to volatile market conditions. To tackle these issues, this paper presents a new risk-aware approach based on Deep Q-learning Networks. It leverages Quantile Regression DQNs to mitigate the underlying market risks and an action branching architecture to effectively handle high-dimensional stock spaces. Furthermore, it also introduces noise perturbations to the network’s weights aimed at self-tuning the degree of exploration for each input dimension. Based on the empirical simulations, which were carried out on the Dow Jones-30 stocks over a three-year period, the proposed system performs better than state-of-the-art RL solutions in terms of cumulative return, stability, and sharpe ratio.\",\"PeriodicalId\":441475,\"journal\":{\"name\":\"2022 IEEE 16th International Conference on Application of Information and Communication Technologies (AICT)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 16th International Conference on Application of Information and Communication Technologies (AICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICT55583.2022.10013578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 16th International Conference on Application of Information and Communication Technologies (AICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICT55583.2022.10013578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A risk-aware approach to stock portfolio allocation based on Deep Q-Networks
Reinforcement Learning techniques have shown a great potential in the active allocation of stock portfolios. However, state-of-the-art solutions show limited stability and fairly high sensitivity to volatile market conditions. To tackle these issues, this paper presents a new risk-aware approach based on Deep Q-learning Networks. It leverages Quantile Regression DQNs to mitigate the underlying market risks and an action branching architecture to effectively handle high-dimensional stock spaces. Furthermore, it also introduces noise perturbations to the network’s weights aimed at self-tuning the degree of exploration for each input dimension. Based on the empirical simulations, which were carried out on the Dow Jones-30 stocks over a three-year period, the proposed system performs better than state-of-the-art RL solutions in terms of cumulative return, stability, and sharpe ratio.