贝叶斯网络结构学习中K2算法的节点排序方法

F. Gao, Da Huang
{"title":"贝叶斯网络结构学习中K2算法的节点排序方法","authors":"F. Gao, Da Huang","doi":"10.1109/ICAICA50127.2020.9182465","DOIUrl":null,"url":null,"abstract":"Bayesian network is an important model for reasoning in an uncertain environment. A reliable node rank is required by K2 algorithm to learn Bayesian network structure better. To provide a high-quality node rank tailored for K2 algorithm, we propose a node priority-based sorting algorithm. Given observable data only, our algorithm can be employed to learn a node rank without expert knowledge. Specifically, MCMC algorithm is first utilized to yield some Bayesian network structures that can sufficiently fit the observed data. We then define the priority of each node in these network structures. Node rank is finally obtained through weighted scoring based on the priority. The empirical results show that our sorting algorithm performs significantly better than commonly used methods, e.g., randomly sorting and MCMC algorithm, on an Asia network-learning dataset.","PeriodicalId":113564,"journal":{"name":"2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Node Sorting Method for K2 Algorithm in Bayesian Network Structure Learning\",\"authors\":\"F. Gao, Da Huang\",\"doi\":\"10.1109/ICAICA50127.2020.9182465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bayesian network is an important model for reasoning in an uncertain environment. A reliable node rank is required by K2 algorithm to learn Bayesian network structure better. To provide a high-quality node rank tailored for K2 algorithm, we propose a node priority-based sorting algorithm. Given observable data only, our algorithm can be employed to learn a node rank without expert knowledge. Specifically, MCMC algorithm is first utilized to yield some Bayesian network structures that can sufficiently fit the observed data. We then define the priority of each node in these network structures. Node rank is finally obtained through weighted scoring based on the priority. The empirical results show that our sorting algorithm performs significantly better than commonly used methods, e.g., randomly sorting and MCMC algorithm, on an Asia network-learning dataset.\",\"PeriodicalId\":113564,\"journal\":{\"name\":\"2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAICA50127.2020.9182465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICA50127.2020.9182465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

贝叶斯网络是研究不确定环境下推理的重要模型。为了更好地学习贝叶斯网络结构,K2算法需要一个可靠的节点秩。为了提供适合K2算法的高质量节点排名,我们提出了一种基于节点优先级的排序算法。仅在给定可观测数据的情况下,我们的算法可以在没有专家知识的情况下学习节点秩。具体来说,首先利用MCMC算法生成一些能够充分拟合观测数据的贝叶斯网络结构。然后我们定义这些网络结构中每个节点的优先级。最后通过基于优先级的加权评分得到节点排名。实验结果表明,该算法在亚洲网络学习数据集上的表现明显优于随机排序和MCMC算法等常用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Node Sorting Method for K2 Algorithm in Bayesian Network Structure Learning
Bayesian network is an important model for reasoning in an uncertain environment. A reliable node rank is required by K2 algorithm to learn Bayesian network structure better. To provide a high-quality node rank tailored for K2 algorithm, we propose a node priority-based sorting algorithm. Given observable data only, our algorithm can be employed to learn a node rank without expert knowledge. Specifically, MCMC algorithm is first utilized to yield some Bayesian network structures that can sufficiently fit the observed data. We then define the priority of each node in these network structures. Node rank is finally obtained through weighted scoring based on the priority. The empirical results show that our sorting algorithm performs significantly better than commonly used methods, e.g., randomly sorting and MCMC algorithm, on an Asia network-learning dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combined prediction model of tuberculosis based on generalized regression neural network Spinal fracture lesions segmentation based on U-net Review of Research on Multilevel Inverter Based on Asynchronous Motor Application of neural network in abnormal AIS data identification Integrated platform of on-board computer and star sensor electronics system based on COTS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1