影响近地大气细颗粒物密度的气候数据因子模拟

A. Ghobakhlou, S. Zandi, P. Sallis
{"title":"影响近地大气细颗粒物密度的气候数据因子模拟","authors":"A. Ghobakhlou, S. Zandi, P. Sallis","doi":"10.1109/AMS.2017.15","DOIUrl":null,"url":null,"abstract":"this paper describes the relationship of climate toatmospheric particulate matter. The climate factors ofprecipitation, humidity, temperature and wind speed aremapped to the fine-particulate substances measured as being 2.5micrometers in diameter (PM2.5). Using the climate variablesas indicators, the paper illustrates a method for estimating theconcentration potential for PM2.5 in the near-groundatmosphere. The preferred method described is selected fromthree analytical approaches compared using a common data set.The three methods used are Multiple Linear Regression (MLR),Multilayer Perceptron (MLP) and Fuzzy Neural Networksmetho","PeriodicalId":219494,"journal":{"name":"2017 Asia Modelling Symposium (AMS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling Climate Data Factors Influencing Fine-Particulate Matter Density in the Near-Ground Atmosphere\",\"authors\":\"A. Ghobakhlou, S. Zandi, P. Sallis\",\"doi\":\"10.1109/AMS.2017.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"this paper describes the relationship of climate toatmospheric particulate matter. The climate factors ofprecipitation, humidity, temperature and wind speed aremapped to the fine-particulate substances measured as being 2.5micrometers in diameter (PM2.5). Using the climate variablesas indicators, the paper illustrates a method for estimating theconcentration potential for PM2.5 in the near-groundatmosphere. The preferred method described is selected fromthree analytical approaches compared using a common data set.The three methods used are Multiple Linear Regression (MLR),Multilayer Perceptron (MLP) and Fuzzy Neural Networksmetho\",\"PeriodicalId\":219494,\"journal\":{\"name\":\"2017 Asia Modelling Symposium (AMS)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Asia Modelling Symposium (AMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMS.2017.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Asia Modelling Symposium (AMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS.2017.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了气候与大气颗粒物的关系。降水、湿度、温度和风速等气候因素被映射到直径为2.5微米的细颗粒物(PM2.5)上。本文以气候变量为指标,阐述了一种估算近地面大气PM2.5浓度潜力的方法。从使用公共数据集比较的三种分析方法中选择所描述的首选方法。使用的三种方法是多元线性回归(MLR),多层感知器(MLP)和模糊神经网络方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modelling Climate Data Factors Influencing Fine-Particulate Matter Density in the Near-Ground Atmosphere
this paper describes the relationship of climate toatmospheric particulate matter. The climate factors ofprecipitation, humidity, temperature and wind speed aremapped to the fine-particulate substances measured as being 2.5micrometers in diameter (PM2.5). Using the climate variablesas indicators, the paper illustrates a method for estimating theconcentration potential for PM2.5 in the near-groundatmosphere. The preferred method described is selected fromthree analytical approaches compared using a common data set.The three methods used are Multiple Linear Regression (MLR),Multilayer Perceptron (MLP) and Fuzzy Neural Networksmetho
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computer Simulation of an Arbitrary Acoustical Field in Rooms Battery-Free and Energy-Effective RFID Sensor Tag for Health Monitoring in Smart Grid Assessment of Spinal Cord Injury via Sparse Modeling of Somatosensory Evoked Potential Signals Performance of Frequency Estimation Techniques with Phase Noise in mm-Wave Based 5G Systems Frontier Exploration Technique for 3D Autonomous SLAM Using K-Means Based Divisive Clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1