基于加权傅里叶变换的似然比函数新的下界

K. Todros, J. Tabrikian
{"title":"基于加权傅里叶变换的似然比函数新的下界","authors":"K. Todros, J. Tabrikian","doi":"10.1109/SAM.2008.4606905","DOIUrl":null,"url":null,"abstract":"In this paper, a new lower bound on the mean-square-error of unbiased estimators of deterministic parameters is developed. The proposed bound is derived from a class of bounds presented in our recent work using the kernel of the Fourier transform, multiplied by a ldquoweightingrdquo function. The ldquoweightingrdquo function is defined on the parameter space and its significance in the parameter space and frequency domain is discussed throughout the paper. We show that the proposed bound is computationally manageable and can be easily implemented using the fast Fourier transform. The proposed bound is applied for the problem of direction-of-arrival estimation. It is shown by simulations that in comparison to other existing bounds in the literature, the proposed bound provides better prediction of the signal-to-noise ratio threshold region, exhibited by the maximum-likelihood estimator.","PeriodicalId":422747,"journal":{"name":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A new lower bound based on weighted fourier transform of the likelihood ratio function\",\"authors\":\"K. Todros, J. Tabrikian\",\"doi\":\"10.1109/SAM.2008.4606905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new lower bound on the mean-square-error of unbiased estimators of deterministic parameters is developed. The proposed bound is derived from a class of bounds presented in our recent work using the kernel of the Fourier transform, multiplied by a ldquoweightingrdquo function. The ldquoweightingrdquo function is defined on the parameter space and its significance in the parameter space and frequency domain is discussed throughout the paper. We show that the proposed bound is computationally manageable and can be easily implemented using the fast Fourier transform. The proposed bound is applied for the problem of direction-of-arrival estimation. It is shown by simulations that in comparison to other existing bounds in the literature, the proposed bound provides better prediction of the signal-to-noise ratio threshold region, exhibited by the maximum-likelihood estimator.\",\"PeriodicalId\":422747,\"journal\":{\"name\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2008.4606905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2008.4606905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文给出了确定性参数无偏估计的均方误差的一个新的下界。所提出的边界是从我们最近的工作中提出的一类边界中推导出来的,使用傅里叶变换的核,乘以一个ldquoweightinggrdquo函数。本文在参数空间上定义了ldquoweightinggrdquo函数,并讨论了它在参数空间和频域的意义。我们证明了所提出的边界在计算上是可管理的,并且可以很容易地使用快速傅里叶变换实现。将所提出的边界应用于到达方向估计问题。仿真表明,与文献中的其他现有边界相比,所提出的边界提供了更好的信噪比阈值区域的预测,由最大似然估计器显示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new lower bound based on weighted fourier transform of the likelihood ratio function
In this paper, a new lower bound on the mean-square-error of unbiased estimators of deterministic parameters is developed. The proposed bound is derived from a class of bounds presented in our recent work using the kernel of the Fourier transform, multiplied by a ldquoweightingrdquo function. The ldquoweightingrdquo function is defined on the parameter space and its significance in the parameter space and frequency domain is discussed throughout the paper. We show that the proposed bound is computationally manageable and can be easily implemented using the fast Fourier transform. The proposed bound is applied for the problem of direction-of-arrival estimation. It is shown by simulations that in comparison to other existing bounds in the literature, the proposed bound provides better prediction of the signal-to-noise ratio threshold region, exhibited by the maximum-likelihood estimator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A dual-linear predictor approach to blind source extraction for noisy mixtures Optimal combination of fourth order statistics for non-circular source separation Blind channel identification and signal recovery by confining a component of the observations into a convex-hull of minimum volume Power-aware distributed detection in IR-UWB sensor networks Linear least squares based acoustic source localization utilizing energy measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1