{"title":"适用于半监督学习算法的简单循环选择和增量强化选择方法","authors":"Thanh-Binh Le, Sang-Woon Kim","doi":"10.1109/ELINFOCOM.2014.6914422","DOIUrl":null,"url":null,"abstract":"This paper presents an empirical study on selecting a small amount useful unlabeled data with which the classification accuracy of semi-supervised learning (SSL) algorithms can be improved. In particular, two selection strategies, named simply recycled selection and incrementally reinforced selection, are considered and empirically compared. The experimental results, obtained with well-known benchmark data sets, demonstrate that the latter works better than the former does in terms of classification accuracy.","PeriodicalId":360207,"journal":{"name":"2014 International Conference on Electronics, Information and Communications (ICEIC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Simply recycled selection and incrementally reinforced selection methods applicable for semi-supervised learning algorithms\",\"authors\":\"Thanh-Binh Le, Sang-Woon Kim\",\"doi\":\"10.1109/ELINFOCOM.2014.6914422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an empirical study on selecting a small amount useful unlabeled data with which the classification accuracy of semi-supervised learning (SSL) algorithms can be improved. In particular, two selection strategies, named simply recycled selection and incrementally reinforced selection, are considered and empirically compared. The experimental results, obtained with well-known benchmark data sets, demonstrate that the latter works better than the former does in terms of classification accuracy.\",\"PeriodicalId\":360207,\"journal\":{\"name\":\"2014 International Conference on Electronics, Information and Communications (ICEIC)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Electronics, Information and Communications (ICEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELINFOCOM.2014.6914422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Electronics, Information and Communications (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELINFOCOM.2014.6914422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simply recycled selection and incrementally reinforced selection methods applicable for semi-supervised learning algorithms
This paper presents an empirical study on selecting a small amount useful unlabeled data with which the classification accuracy of semi-supervised learning (SSL) algorithms can be improved. In particular, two selection strategies, named simply recycled selection and incrementally reinforced selection, are considered and empirically compared. The experimental results, obtained with well-known benchmark data sets, demonstrate that the latter works better than the former does in terms of classification accuracy.