{"title":"并行油藏模拟中内部文件的无损压缩","authors":"M. Rogowski, Suha N. Kayum, F. Mannuß","doi":"10.1109/HPEC.2019.8916298","DOIUrl":null,"url":null,"abstract":"In parallel reservoir simulation, massively sized files are written recurrently throughout a simulation run. A method is developed to compress the distributed data to be written during the simulation run and to output it to a single compressed file. Evaluation of several compression algorithms on a range of simulation models is performed. The presented method results in 3x file size reduction and a decrease in the total application runtime.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lossless Compression of Internal Files in Parallel Reservoir Simulation\",\"authors\":\"M. Rogowski, Suha N. Kayum, F. Mannuß\",\"doi\":\"10.1109/HPEC.2019.8916298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In parallel reservoir simulation, massively sized files are written recurrently throughout a simulation run. A method is developed to compress the distributed data to be written during the simulation run and to output it to a single compressed file. Evaluation of several compression algorithms on a range of simulation models is performed. The presented method results in 3x file size reduction and a decrease in the total application runtime.\",\"PeriodicalId\":184253,\"journal\":{\"name\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2019.8916298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lossless Compression of Internal Files in Parallel Reservoir Simulation
In parallel reservoir simulation, massively sized files are written recurrently throughout a simulation run. A method is developed to compress the distributed data to be written during the simulation run and to output it to a single compressed file. Evaluation of several compression algorithms on a range of simulation models is performed. The presented method results in 3x file size reduction and a decrease in the total application runtime.