传感器阵列计算成像的熵度量正则化

Prudhvi K. Gurram, R. Rao
{"title":"传感器阵列计算成像的熵度量正则化","authors":"Prudhvi K. Gurram, R. Rao","doi":"10.1109/AIPR.2014.7041929","DOIUrl":null,"url":null,"abstract":"Correlative interferometric image reconstruction is a computational imaging approach for synthesizing images from sensor arrays and relies on estimating source intensity from the cross-correlation across near-field or far-field measurements from multiple sensors of the arrays. Key to using the approach is the exploitation of relationship between the correlation and the source intensity. This relationship is of a Fourier transform type when the sensors are in the far-field of the source and the velocity of wave propagation in the intervening medium is constant. Often the estimation problem is ill-posed resulting in unrealistic reconstructions of images. Positivity constraints, boundary restrictions, ℓ1 regularization, and sparsity constrained optimization have been applied in previous work. This paper considers the noisy case and formulates the estimation problem as least squares minimization with entropy metrics, either minimum or maximum, as regularization terms. Situations involving far-field interferometric imaging of extended sources are considered and results illustrating the advantages of these entropy metrics and their applicability are provided.","PeriodicalId":210982,"journal":{"name":"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy metric regularization for computational imaging with sensor arrays\",\"authors\":\"Prudhvi K. Gurram, R. Rao\",\"doi\":\"10.1109/AIPR.2014.7041929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Correlative interferometric image reconstruction is a computational imaging approach for synthesizing images from sensor arrays and relies on estimating source intensity from the cross-correlation across near-field or far-field measurements from multiple sensors of the arrays. Key to using the approach is the exploitation of relationship between the correlation and the source intensity. This relationship is of a Fourier transform type when the sensors are in the far-field of the source and the velocity of wave propagation in the intervening medium is constant. Often the estimation problem is ill-posed resulting in unrealistic reconstructions of images. Positivity constraints, boundary restrictions, ℓ1 regularization, and sparsity constrained optimization have been applied in previous work. This paper considers the noisy case and formulates the estimation problem as least squares minimization with entropy metrics, either minimum or maximum, as regularization terms. Situations involving far-field interferometric imaging of extended sources are considered and results illustrating the advantages of these entropy metrics and their applicability are provided.\",\"PeriodicalId\":210982,\"journal\":{\"name\":\"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2014.7041929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2014.7041929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

相关干涉图像重建是一种用于从传感器阵列合成图像的计算成像方法,它依赖于从阵列的多个传感器的近场或远场测量的相互关系中估计源强度。使用该方法的关键是利用相关系数与源强度之间的关系。当传感器位于源的远场并且波在中间介质中的传播速度恒定时,这种关系属于傅里叶变换类型。通常估计问题是病态的,导致图像重建不现实。正性约束、边界约束、1正则化和稀疏性约束优化已在以往的工作中得到应用。本文考虑了有噪声的情况,将估计问题表述为最小二乘最小化,熵度量以最小或最大为正则化项。考虑了涉及扩展源远场干涉成像的情况,并给出了说明这些熵度量的优点及其适用性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Entropy metric regularization for computational imaging with sensor arrays
Correlative interferometric image reconstruction is a computational imaging approach for synthesizing images from sensor arrays and relies on estimating source intensity from the cross-correlation across near-field or far-field measurements from multiple sensors of the arrays. Key to using the approach is the exploitation of relationship between the correlation and the source intensity. This relationship is of a Fourier transform type when the sensors are in the far-field of the source and the velocity of wave propagation in the intervening medium is constant. Often the estimation problem is ill-posed resulting in unrealistic reconstructions of images. Positivity constraints, boundary restrictions, ℓ1 regularization, and sparsity constrained optimization have been applied in previous work. This paper considers the noisy case and formulates the estimation problem as least squares minimization with entropy metrics, either minimum or maximum, as regularization terms. Situations involving far-field interferometric imaging of extended sources are considered and results illustrating the advantages of these entropy metrics and their applicability are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning tree-structured approximations for conditional random fields Multi-resolution deblurring High dynamic range (HDR) video processing for the exploitation of high bit-depth sensors in human-monitored surveillance Extension of no-reference deblurring methods through image fusion 3D sparse point reconstructions of atmospheric nuclear detonations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1