M. Gruosso, N. Capece, U. Erra, Flavio Biancospino
{"title":"机械臂三维仿真环境下深度强化学习的验证方法","authors":"M. Gruosso, N. Capece, U. Erra, Flavio Biancospino","doi":"10.1109/SAMI50585.2021.9378684","DOIUrl":null,"url":null,"abstract":"In recent years, deep reinforcement learning has increasingly contributed to the development of robotic applications and boosted research in robotics. Deep learning and model-free, off-policy, value-based reinforcement learning algorithms enabled agents to successfully learn complex robotic skills through trial and error process and visual inputs. The aim of this paper concerns the training of a robot in a simulation environment by designing a Deep Q-Network (DQN) that elaborates images acquired by an RGB vision sensor inside a 3D simulated environment and outputs a value for each action the robotic arm can execute given the current state. In particular, the robot has to push a ball into a soccer net without any knowledge of the environment and its own location. In addition, our further goal was to perform agent validation during training and assess its generalization level. Despite the many advances in reinforcement learning, it is still a challenge. Therefore, we devised a validation strategy similar to the method applied in supervised learning and tested the agent both on known and unknown experiences, achieving interesting and promising results.","PeriodicalId":402414,"journal":{"name":"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Validation Approach for Deep Reinforcement Learning of a Robotic Arm in a 3D Simulated Environment\",\"authors\":\"M. Gruosso, N. Capece, U. Erra, Flavio Biancospino\",\"doi\":\"10.1109/SAMI50585.2021.9378684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, deep reinforcement learning has increasingly contributed to the development of robotic applications and boosted research in robotics. Deep learning and model-free, off-policy, value-based reinforcement learning algorithms enabled agents to successfully learn complex robotic skills through trial and error process and visual inputs. The aim of this paper concerns the training of a robot in a simulation environment by designing a Deep Q-Network (DQN) that elaborates images acquired by an RGB vision sensor inside a 3D simulated environment and outputs a value for each action the robotic arm can execute given the current state. In particular, the robot has to push a ball into a soccer net without any knowledge of the environment and its own location. In addition, our further goal was to perform agent validation during training and assess its generalization level. Despite the many advances in reinforcement learning, it is still a challenge. Therefore, we devised a validation strategy similar to the method applied in supervised learning and tested the agent both on known and unknown experiences, achieving interesting and promising results.\",\"PeriodicalId\":402414,\"journal\":{\"name\":\"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMI50585.2021.9378684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI50585.2021.9378684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Validation Approach for Deep Reinforcement Learning of a Robotic Arm in a 3D Simulated Environment
In recent years, deep reinforcement learning has increasingly contributed to the development of robotic applications and boosted research in robotics. Deep learning and model-free, off-policy, value-based reinforcement learning algorithms enabled agents to successfully learn complex robotic skills through trial and error process and visual inputs. The aim of this paper concerns the training of a robot in a simulation environment by designing a Deep Q-Network (DQN) that elaborates images acquired by an RGB vision sensor inside a 3D simulated environment and outputs a value for each action the robotic arm can execute given the current state. In particular, the robot has to push a ball into a soccer net without any knowledge of the environment and its own location. In addition, our further goal was to perform agent validation during training and assess its generalization level. Despite the many advances in reinforcement learning, it is still a challenge. Therefore, we devised a validation strategy similar to the method applied in supervised learning and tested the agent both on known and unknown experiences, achieving interesting and promising results.