期刊个性化推荐的可扩展方法

Zhen Qin, I. Rishabh, John Carnahan
{"title":"期刊个性化推荐的可扩展方法","authors":"Zhen Qin, I. Rishabh, John Carnahan","doi":"10.1145/2959100.2959139","DOIUrl":null,"url":null,"abstract":"We develop a highly scalable and effective contextual bandit approach towards periodical personalized recommendations. The online bootstrapping-based technique provides a principled way for UCB-type exploitation-exploration algorithms, while being able to handle arbitrary sized datasets, well suited to learn the ever evolving user preference drift from streaming data, and essentially parameter-free. We further introduce techniques to handle arbitrary sized feature spaces using feature hashing, leverage existing state-of-art machine learning via learning reduction, and increase cache hits by managing bootstrapped models in memory effectively. The resulted model trains on millions of examples and billions of features within minutes on a single personal computer. It shows persistent performance in both offline and online evaluation. We observe around 10\\% click through rate (CTR) and conversion lift over a collaborative filtering approach in real-world A/B testing across more than 40 million users on the major Ticketmaster email recommendation product.","PeriodicalId":315651,"journal":{"name":"Proceedings of the 10th ACM Conference on Recommender Systems","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Scalable Approach for Periodical Personalized Recommendations\",\"authors\":\"Zhen Qin, I. Rishabh, John Carnahan\",\"doi\":\"10.1145/2959100.2959139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a highly scalable and effective contextual bandit approach towards periodical personalized recommendations. The online bootstrapping-based technique provides a principled way for UCB-type exploitation-exploration algorithms, while being able to handle arbitrary sized datasets, well suited to learn the ever evolving user preference drift from streaming data, and essentially parameter-free. We further introduce techniques to handle arbitrary sized feature spaces using feature hashing, leverage existing state-of-art machine learning via learning reduction, and increase cache hits by managing bootstrapped models in memory effectively. The resulted model trains on millions of examples and billions of features within minutes on a single personal computer. It shows persistent performance in both offline and online evaluation. We observe around 10\\\\% click through rate (CTR) and conversion lift over a collaborative filtering approach in real-world A/B testing across more than 40 million users on the major Ticketmaster email recommendation product.\",\"PeriodicalId\":315651,\"journal\":{\"name\":\"Proceedings of the 10th ACM Conference on Recommender Systems\",\"volume\":\"149 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2959100.2959139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2959100.2959139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们开发了一种高度可扩展和有效的上下文强盗方法,用于定期个性化推荐。基于在线引导的技术为ucb类型的开发探索算法提供了一种原则性的方法,同时能够处理任意大小的数据集,非常适合从流数据中学习不断发展的用户偏好漂移,并且基本上是无参数的。我们进一步介绍了使用特征哈希来处理任意大小的特征空间的技术,利用现有的最先进的机器学习,通过学习减少,并通过有效地管理内存中的自引导模型来增加缓存命中。生成的模型在几分钟内就能在一台个人电脑上训练数百万个样本和数十亿个特征。它在离线和在线评估中都显示出持久的性能。在对Ticketmaster主要电子邮件推荐产品的4000多万用户进行的实际a /B测试中,我们观察到,通过协作过滤方法,点击率(CTR)和转化率提升了10%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Scalable Approach for Periodical Personalized Recommendations
We develop a highly scalable and effective contextual bandit approach towards periodical personalized recommendations. The online bootstrapping-based technique provides a principled way for UCB-type exploitation-exploration algorithms, while being able to handle arbitrary sized datasets, well suited to learn the ever evolving user preference drift from streaming data, and essentially parameter-free. We further introduce techniques to handle arbitrary sized feature spaces using feature hashing, leverage existing state-of-art machine learning via learning reduction, and increase cache hits by managing bootstrapped models in memory effectively. The resulted model trains on millions of examples and billions of features within minutes on a single personal computer. It shows persistent performance in both offline and online evaluation. We observe around 10\% click through rate (CTR) and conversion lift over a collaborative filtering approach in real-world A/B testing across more than 40 million users on the major Ticketmaster email recommendation product.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opening Remarks Mining Information for the Cold-Item Problem Are You Influenced by Others When Rating?: Improve Rating Prediction by Conformity Modeling Contrasting Offline and Online Results when Evaluating Recommendation Algorithms Intent-Aware Diversification Using a Constrained PLSA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1