用少镜头提示学习实现模型自动完成

Meriem Ben Chaaben, Lola Burgueño, H. Sahraoui
{"title":"用少镜头提示学习实现模型自动完成","authors":"Meriem Ben Chaaben, Lola Burgueño, H. Sahraoui","doi":"10.1109/ICSE-NIER58687.2023.00008","DOIUrl":null,"url":null,"abstract":"We propose a simple yet a novel approach to improve completion in domain modeling activities. Our approach exploits the power of large language models by using few-shot prompt learning without the need to train or fine-tune those models with large datasets that are scarce in this field. We implemented our approach and tested it on the completion of static and dynamic domain diagrams. Our initial evaluation shows that such an approach is effective and can be integrated in different ways during the modeling activities.","PeriodicalId":297025,"journal":{"name":"2023 IEEE/ACM 45th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Towards using Few-Shot Prompt Learning for Automating Model Completion\",\"authors\":\"Meriem Ben Chaaben, Lola Burgueño, H. Sahraoui\",\"doi\":\"10.1109/ICSE-NIER58687.2023.00008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a simple yet a novel approach to improve completion in domain modeling activities. Our approach exploits the power of large language models by using few-shot prompt learning without the need to train or fine-tune those models with large datasets that are scarce in this field. We implemented our approach and tested it on the completion of static and dynamic domain diagrams. Our initial evaluation shows that such an approach is effective and can be integrated in different ways during the modeling activities.\",\"PeriodicalId\":297025,\"journal\":{\"name\":\"2023 IEEE/ACM 45th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/ACM 45th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE-NIER58687.2023.00008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 45th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE-NIER58687.2023.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了一种简单而新颖的方法来提高领域建模活动的完成度。我们的方法利用了大型语言模型的强大功能,通过使用少量的提示学习,而不需要使用该领域稀缺的大型数据集来训练或微调这些模型。我们实现了我们的方法,并在静态和动态域图的完成上进行了测试。我们的初步评估表明,这种方法是有效的,并且可以在建模活动中以不同的方式集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards using Few-Shot Prompt Learning for Automating Model Completion
We propose a simple yet a novel approach to improve completion in domain modeling activities. Our approach exploits the power of large language models by using few-shot prompt learning without the need to train or fine-tune those models with large datasets that are scarce in this field. We implemented our approach and tested it on the completion of static and dynamic domain diagrams. Our initial evaluation shows that such an approach is effective and can be integrated in different ways during the modeling activities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Analysis with Bayesian Inference Interpersonal Trust in OSS: Exploring Dimensions of Trust in GitHub Pull Requests Message from the ICSE 2023 General Chair A Novel and Pragmatic Scenario Modeling Framework with Verification-in-the-loop for Autonomous Driving Systems Test-Driven Development Benefits Beyond Design Quality: Flow State and Developer Experience
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1