以质心轮廓距离边界矩为形状特征的芒果叶片分类

Eko Prasetyo, R. Adityo, N. Suciati, C. Fatichah
{"title":"以质心轮廓距离边界矩为形状特征的芒果叶片分类","authors":"Eko Prasetyo, R. Adityo, N. Suciati, C. Fatichah","doi":"10.1109/ISITIA.2018.8711115","DOIUrl":null,"url":null,"abstract":"The previous research in mango leaf classification which used 270 features consisted of 256 texture features, 2 color features, and 2 shape features, could not achieve high classification performance. In this study, we conduct improvement by combining the previous features with the Boundary Moments of Centroid Contour Distance (CCD) and classify the combination features using Support Vector Machine with Linear and RBF kernels. The experiment results show that the combination features achieve higher classification performance compared to the previous features.","PeriodicalId":388463,"journal":{"name":"2018 International Seminar on Intelligent Technology and Its Applications (ISITIA)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mango Leaf Classification with Boundary Moments of Centroid Contour Distances as Shape Features\",\"authors\":\"Eko Prasetyo, R. Adityo, N. Suciati, C. Fatichah\",\"doi\":\"10.1109/ISITIA.2018.8711115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The previous research in mango leaf classification which used 270 features consisted of 256 texture features, 2 color features, and 2 shape features, could not achieve high classification performance. In this study, we conduct improvement by combining the previous features with the Boundary Moments of Centroid Contour Distance (CCD) and classify the combination features using Support Vector Machine with Linear and RBF kernels. The experiment results show that the combination features achieve higher classification performance compared to the previous features.\",\"PeriodicalId\":388463,\"journal\":{\"name\":\"2018 International Seminar on Intelligent Technology and Its Applications (ISITIA)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Seminar on Intelligent Technology and Its Applications (ISITIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISITIA.2018.8711115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Seminar on Intelligent Technology and Its Applications (ISITIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISITIA.2018.8711115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

以往的芒果叶分类研究使用了270个特征,包括256个纹理特征、2个颜色特征和2个形状特征,无法达到较高的分类性能。在本研究中,我们将之前的特征与质心轮廓距离(CCD)的边界矩相结合进行改进,并使用线性核和RBF核的支持向量机对组合特征进行分类。实验结果表明,与之前的特征相比,组合特征取得了更高的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mango Leaf Classification with Boundary Moments of Centroid Contour Distances as Shape Features
The previous research in mango leaf classification which used 270 features consisted of 256 texture features, 2 color features, and 2 shape features, could not achieve high classification performance. In this study, we conduct improvement by combining the previous features with the Boundary Moments of Centroid Contour Distance (CCD) and classify the combination features using Support Vector Machine with Linear and RBF kernels. The experiment results show that the combination features achieve higher classification performance compared to the previous features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Losing Synchronism Technique based on Critical Trajectory Method for Obtaining the CCT with Installing SCES Design of a SINRD bandpass filter based on equivalent circuit method A Geometry-Based Underwater Acoustic Channel Model for Time Reversal Acoustic Communication Implementation and Feasibility Analysis of GSM Based Smart Energy Meter for Digitalized Power Consumption with Advanced Features Performance of BLDC Motor Speed Control Based on Hysteresis Current Control Mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1