癫痫脑电图分析的自适应预测模型

S. Mylonas, R. Comley
{"title":"癫痫脑电图分析的自适应预测模型","authors":"S. Mylonas, R. Comley","doi":"10.1109/ICCS.1992.255068","DOIUrl":null,"url":null,"abstract":"A signal processing model for the epileptic EEG is used to formulate an analysis model, based on linear prediction. This formulation is implemented as a number of adaptive filters and applied for the detection of epileptic spikes. The theory behind the method is explained and the implementation described. Results are presented and compared for two adaptive filter realizations. The computationally efficient algorithm can be implemented in real-time on a small microcomputer system for on-line analysis. Intermediate results produced by this method may be used for further analysis. Generalization for the detection of other EEG transients and the removal of artifacts can be achieved easily.<<ETX>>","PeriodicalId":223769,"journal":{"name":"[Proceedings] Singapore ICCS/ISITA `92","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptive predictive modelling for the analysis of the epileptic EEG\",\"authors\":\"S. Mylonas, R. Comley\",\"doi\":\"10.1109/ICCS.1992.255068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A signal processing model for the epileptic EEG is used to formulate an analysis model, based on linear prediction. This formulation is implemented as a number of adaptive filters and applied for the detection of epileptic spikes. The theory behind the method is explained and the implementation described. Results are presented and compared for two adaptive filter realizations. The computationally efficient algorithm can be implemented in real-time on a small microcomputer system for on-line analysis. Intermediate results produced by this method may be used for further analysis. Generalization for the detection of other EEG transients and the removal of artifacts can be achieved easily.<<ETX>>\",\"PeriodicalId\":223769,\"journal\":{\"name\":\"[Proceedings] Singapore ICCS/ISITA `92\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings] Singapore ICCS/ISITA `92\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCS.1992.255068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] Singapore ICCS/ISITA `92","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCS.1992.255068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

利用癫痫脑电图的信号处理模型,建立了基于线性预测的分析模型。该配方被实现为许多自适应滤波器,并应用于癫痫尖峰的检测。解释了该方法背后的理论,并描述了实现方法。给出了两种自适应滤波实现的结果并进行了比较。该算法计算效率高,可在小型微机系统上实时实现在线分析。该方法产生的中间结果可用于进一步分析。可以很容易地实现对其他脑电信号瞬态检测和伪影去除的泛化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive predictive modelling for the analysis of the epileptic EEG
A signal processing model for the epileptic EEG is used to formulate an analysis model, based on linear prediction. This formulation is implemented as a number of adaptive filters and applied for the detection of epileptic spikes. The theory behind the method is explained and the implementation described. Results are presented and compared for two adaptive filter realizations. The computationally efficient algorithm can be implemented in real-time on a small microcomputer system for on-line analysis. Intermediate results produced by this method may be used for further analysis. Generalization for the detection of other EEG transients and the removal of artifacts can be achieved easily.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance analysis of interconnected LANS with server/client configuration An enhanced approach to character recognition by Fourier descriptor A new error control techinque for the parallel combinatory spread spectrum communication system Pattern recognition using optical binary perceptron Fast VQ algorithm using scalar prequantization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1