智能物联网-在NVIDIA Jetson Tx芯片上实现嵌入式ML AI Tensorflow算法

P. Lipnicki, D. Lewandowski, M. Syfert, Anna Sztyber, P. Wnuk
{"title":"智能物联网-在NVIDIA Jetson Tx芯片上实现嵌入式ML AI Tensorflow算法","authors":"P. Lipnicki, D. Lewandowski, M. Syfert, Anna Sztyber, P. Wnuk","doi":"10.1109/FiCloud.2019.00049","DOIUrl":null,"url":null,"abstract":"This article presents a description of the project and implementation of the system for the execution of on-line diagnostics of compressors using the methods of artificial intelligence and the Tensorflow library. The main tasks of the system are: on-line acquisition of process data from the compressor set, on-line state monitoring (fault detection) of the compressor set based on the analysis of process data and using the classifiers modelled using the Tensorflow library. The system is intended to be a proof of concept, it should show the possibility of using Tensorflow library models running on the Jetson platform for on-line monitoring of compressor faults. The sample models proposed and prepared during previous research and development projects were used for testing. The algorithms used to identify and detect failures are based on MLP, CNN, SVM and LSTM - keras.","PeriodicalId":268882,"journal":{"name":"2019 7th International Conference on Future Internet of Things and Cloud (FiCloud)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inteligent IoTSP - Implementation of Embedded ML AI Tensorflow Algorithms on the NVIDIA Jetson Tx Chip\",\"authors\":\"P. Lipnicki, D. Lewandowski, M. Syfert, Anna Sztyber, P. Wnuk\",\"doi\":\"10.1109/FiCloud.2019.00049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a description of the project and implementation of the system for the execution of on-line diagnostics of compressors using the methods of artificial intelligence and the Tensorflow library. The main tasks of the system are: on-line acquisition of process data from the compressor set, on-line state monitoring (fault detection) of the compressor set based on the analysis of process data and using the classifiers modelled using the Tensorflow library. The system is intended to be a proof of concept, it should show the possibility of using Tensorflow library models running on the Jetson platform for on-line monitoring of compressor faults. The sample models proposed and prepared during previous research and development projects were used for testing. The algorithms used to identify and detect failures are based on MLP, CNN, SVM and LSTM - keras.\",\"PeriodicalId\":268882,\"journal\":{\"name\":\"2019 7th International Conference on Future Internet of Things and Cloud (FiCloud)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 7th International Conference on Future Internet of Things and Cloud (FiCloud)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FiCloud.2019.00049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Conference on Future Internet of Things and Cloud (FiCloud)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FiCloud.2019.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了利用人工智能和Tensorflow库的方法对压缩机进行在线诊断的系统的设计和实现。该系统的主要任务是:在线获取压缩机组过程数据,基于过程数据分析和使用Tensorflow库建模的分类器对压缩机组进行在线状态监测(故障检测)。该系统旨在作为一个概念验证,它应该显示使用在Jetson平台上运行的Tensorflow库模型在线监测压缩机故障的可能性。在以前的研究和开发项目中提出和准备的样本模型被用于测试。用于故障识别和检测的算法基于MLP、CNN、SVM和LSTM - keras。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inteligent IoTSP - Implementation of Embedded ML AI Tensorflow Algorithms on the NVIDIA Jetson Tx Chip
This article presents a description of the project and implementation of the system for the execution of on-line diagnostics of compressors using the methods of artificial intelligence and the Tensorflow library. The main tasks of the system are: on-line acquisition of process data from the compressor set, on-line state monitoring (fault detection) of the compressor set based on the analysis of process data and using the classifiers modelled using the Tensorflow library. The system is intended to be a proof of concept, it should show the possibility of using Tensorflow library models running on the Jetson platform for on-line monitoring of compressor faults. The sample models proposed and prepared during previous research and development projects were used for testing. The algorithms used to identify and detect failures are based on MLP, CNN, SVM and LSTM - keras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bazaar-Contract: A Smart Contract for Binding Multi-Round Bilateral Negotiations on Cloud Markets AL and S Methods: Two Extensions for L-Method Intelligent Solutions for Secure Communication and Collaboration Based on Cloud Technologies IoTSP: Thread Mesh vs Other Widely used Wireless Protocols – Comparison and use Cases Study A Framework for Distributed Denial of Service Attack Detection and Reactive Countermeasure in Software Defined Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1