基于生物力学模型的人体手臂一致性测试

C. Stark, Aaron Pereira, M. Althoff
{"title":"基于生物力学模型的人体手臂一致性测试","authors":"C. Stark, Aaron Pereira, M. Althoff","doi":"10.1109/IRC.2018.00045","DOIUrl":null,"url":null,"abstract":"Guaranteeing safety in human-robot co-existence often requires a prediction of the volume that could be occupied by the human up to a future time, in order to avoid collisions. Such predictions should be simple and fast for real-time calculation and collision-checking, but account even for unexpected movement. We use a complex biomechanical model to search for extreme human movement, to validate such a prediction. Since the model has a large input space and highly nonlinear dynamics, we use an exploration algorithm based on RRTs to efficiently find the extreme movements. We find that the simple prediction encloses all arm positions found by the exploration algorithm, except where the biomechanical model does not account for collision between body tissue.","PeriodicalId":416113,"journal":{"name":"2018 Second IEEE International Conference on Robotic Computing (IRC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Reachset Conformance Testing of Human Arms with a Biomechanical Model\",\"authors\":\"C. Stark, Aaron Pereira, M. Althoff\",\"doi\":\"10.1109/IRC.2018.00045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Guaranteeing safety in human-robot co-existence often requires a prediction of the volume that could be occupied by the human up to a future time, in order to avoid collisions. Such predictions should be simple and fast for real-time calculation and collision-checking, but account even for unexpected movement. We use a complex biomechanical model to search for extreme human movement, to validate such a prediction. Since the model has a large input space and highly nonlinear dynamics, we use an exploration algorithm based on RRTs to efficiently find the extreme movements. We find that the simple prediction encloses all arm positions found by the exploration algorithm, except where the biomechanical model does not account for collision between body tissue.\",\"PeriodicalId\":416113,\"journal\":{\"name\":\"2018 Second IEEE International Conference on Robotic Computing (IRC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Second IEEE International Conference on Robotic Computing (IRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRC.2018.00045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC.2018.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

为了保证人机共存的安全,通常需要预测到未来一段时间人类可能占据的体积,以避免碰撞。这样的预测应该是简单和快速的实时计算和碰撞检查,但甚至考虑到意外的移动。我们使用一个复杂的生物力学模型来寻找极端的人体运动,以验证这样的预测。由于该模型具有较大的输入空间和高度非线性的动力学特性,我们采用了基于RRTs的探索算法来有效地找到极端运动。我们发现,简单的预测包含了探索算法找到的所有手臂位置,除了生物力学模型没有考虑身体组织之间的碰撞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reachset Conformance Testing of Human Arms with a Biomechanical Model
Guaranteeing safety in human-robot co-existence often requires a prediction of the volume that could be occupied by the human up to a future time, in order to avoid collisions. Such predictions should be simple and fast for real-time calculation and collision-checking, but account even for unexpected movement. We use a complex biomechanical model to search for extreme human movement, to validate such a prediction. Since the model has a large input space and highly nonlinear dynamics, we use an exploration algorithm based on RRTs to efficiently find the extreme movements. We find that the simple prediction encloses all arm positions found by the exploration algorithm, except where the biomechanical model does not account for collision between body tissue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning a Set of Interrelated Tasks by Using Sequences of Motor Policies for a Strategic Intrinsically Motivated Learner Improving Code Quality in ROS Packages Using a Temporal Extension of First-Order Logic Rapid Qualification of Mereotopological Relationships Using Signed Distance Fields Towards a Multi-mission QoS and Energy Manager for Autonomous Mobile Robots A Computational Framework for Complementary Situational Awareness (CSA) in Surgical Assistant Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1