非侵入多项式混沌展开在截断随机变量概率潮流中的应用

F. Ni, Phuong H. Nguyen, J.F.G. Cobben, Junjie Tang
{"title":"非侵入多项式混沌展开在截断随机变量概率潮流中的应用","authors":"F. Ni, Phuong H. Nguyen, J.F.G. Cobben, Junjie Tang","doi":"10.1109/PMAPS.2016.7764175","DOIUrl":null,"url":null,"abstract":"In this paper, the authors apply a surrogate model-based method for probabilistic power flow (PPF) in the power system subject to truncated random variables. Due to a growing number of uncertainty sources are being brought into the modern power system, the traditional deterministic power flow analysis lacks its ability to recognize the realistic states of power systems, and thus turns to PPF for help. However, the PPF analysis is still facing several challenges: the computational effort required by the traditional simulation method is prohibitively expensive; and the modeling of uncertainty sources needs the improvement on both distribution type selection and parameter evaluation. The novelty of this work lies in taking advantage of both general polynomial chaos (gPC) expansion and ordinary least squares (OLS) to deal with PPF in presence of the truncated random variables. The performance of the proposed method is verified on the IEEE 30-Bus test system, considering uncertain factors brought by active power at load buses. In different test scenarios, the proposed method shows sound performances at the cost of less computational effort, compared to the traditional approach.","PeriodicalId":265474,"journal":{"name":"2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application of non-intrusive polynomial chaos expansion in probabilistic power flow with truncated random variables\",\"authors\":\"F. Ni, Phuong H. Nguyen, J.F.G. Cobben, Junjie Tang\",\"doi\":\"10.1109/PMAPS.2016.7764175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the authors apply a surrogate model-based method for probabilistic power flow (PPF) in the power system subject to truncated random variables. Due to a growing number of uncertainty sources are being brought into the modern power system, the traditional deterministic power flow analysis lacks its ability to recognize the realistic states of power systems, and thus turns to PPF for help. However, the PPF analysis is still facing several challenges: the computational effort required by the traditional simulation method is prohibitively expensive; and the modeling of uncertainty sources needs the improvement on both distribution type selection and parameter evaluation. The novelty of this work lies in taking advantage of both general polynomial chaos (gPC) expansion and ordinary least squares (OLS) to deal with PPF in presence of the truncated random variables. The performance of the proposed method is verified on the IEEE 30-Bus test system, considering uncertain factors brought by active power at load buses. In different test scenarios, the proposed method shows sound performances at the cost of less computational effort, compared to the traditional approach.\",\"PeriodicalId\":265474,\"journal\":{\"name\":\"2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PMAPS.2016.7764175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMAPS.2016.7764175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文采用一种基于代理模型的方法,对随机变量截断的电力系统的概率潮流进行了求解。由于现代电力系统中引入了越来越多的不确定性源,传统的确定性潮流分析缺乏对电力系统现实状态的识别能力,因而转向PPF分析。然而,PPF分析仍然面临着一些挑战:传统模拟方法所需的计算量非常昂贵;不确定性源的建模需要在分布类型选择和参数评估两方面进行改进。本文的新颖之处在于利用一般多项式混沌(gPC)展开和普通最小二乘(OLS)来处理截断随机变量存在下的PPF。在考虑负载母线有功功率带来的不确定因素的IEEE 30-Bus测试系统上验证了该方法的性能。在不同的测试场景下,与传统方法相比,该方法以较少的计算量为代价显示出良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of non-intrusive polynomial chaos expansion in probabilistic power flow with truncated random variables
In this paper, the authors apply a surrogate model-based method for probabilistic power flow (PPF) in the power system subject to truncated random variables. Due to a growing number of uncertainty sources are being brought into the modern power system, the traditional deterministic power flow analysis lacks its ability to recognize the realistic states of power systems, and thus turns to PPF for help. However, the PPF analysis is still facing several challenges: the computational effort required by the traditional simulation method is prohibitively expensive; and the modeling of uncertainty sources needs the improvement on both distribution type selection and parameter evaluation. The novelty of this work lies in taking advantage of both general polynomial chaos (gPC) expansion and ordinary least squares (OLS) to deal with PPF in presence of the truncated random variables. The performance of the proposed method is verified on the IEEE 30-Bus test system, considering uncertain factors brought by active power at load buses. In different test scenarios, the proposed method shows sound performances at the cost of less computational effort, compared to the traditional approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A performance and maintenance evaluation framework for wind turbines Transmission network expansion planning with stochastic multivariate load and wind modeling The anomalous data identification study of reactive power optimization system based on big data A resilient power system operation strategy considering presumed attacks The use of Markov chain method to determine spare transformer number with 3-criteria parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1