基于小波和反向传播的泥炭森林火灾预测

Novera Kristianti, A. Santoso, P. Pranowo
{"title":"基于小波和反向传播的泥炭森林火灾预测","authors":"Novera Kristianti, A. Santoso, P. Pranowo","doi":"10.22146/ijitee.42156","DOIUrl":null,"url":null,"abstract":"One of the causes of smog as well as climate damage, particularly in Palangka Raya, Center Kalimantan, are peat forest fires. There are a lot of losses inflicted by the smog including the increasing number of people who suffer respiratory infection (ARI) due to polluted air and any other related aspects. Peat fires are problematic to overcome because the locations of fires are difficult to be accessed. This paper focuses on building the system to predict the distribution of peat forest fire hotspots by utilizing satellite imagery. In designing the system for predicting the fire hotspots distribution, wavelet orthogonal was used as the initial processing of mapping the distribution of peat forest fire hotspots. Meanwhile, backpropagation method was used to identify the fire hotspot distribution patterns of peat forest fire in this system. From the result of the data tested which had been done for predicting the peat forest fire hotspots, the decomposition image obtained using Haar wavelet had the highest percentage of accuracy to recognize the fire hotspots, which is 90%. The recency of this system was its ability to predict the peat forest fire hotspots distribution which can be used as peat forest fires prevention, especially in Palangka Raya, Central Kalimantan.","PeriodicalId":292390,"journal":{"name":"IJITEE (International Journal of Information Technology and Electrical Engineering)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Prediction of Peat Forest Fires Using Wavelet and Backpropagation\",\"authors\":\"Novera Kristianti, A. Santoso, P. Pranowo\",\"doi\":\"10.22146/ijitee.42156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the causes of smog as well as climate damage, particularly in Palangka Raya, Center Kalimantan, are peat forest fires. There are a lot of losses inflicted by the smog including the increasing number of people who suffer respiratory infection (ARI) due to polluted air and any other related aspects. Peat fires are problematic to overcome because the locations of fires are difficult to be accessed. This paper focuses on building the system to predict the distribution of peat forest fire hotspots by utilizing satellite imagery. In designing the system for predicting the fire hotspots distribution, wavelet orthogonal was used as the initial processing of mapping the distribution of peat forest fire hotspots. Meanwhile, backpropagation method was used to identify the fire hotspot distribution patterns of peat forest fire in this system. From the result of the data tested which had been done for predicting the peat forest fire hotspots, the decomposition image obtained using Haar wavelet had the highest percentage of accuracy to recognize the fire hotspots, which is 90%. The recency of this system was its ability to predict the peat forest fire hotspots distribution which can be used as peat forest fires prevention, especially in Palangka Raya, Central Kalimantan.\",\"PeriodicalId\":292390,\"journal\":{\"name\":\"IJITEE (International Journal of Information Technology and Electrical Engineering)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJITEE (International Journal of Information Technology and Electrical Engineering)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/ijitee.42156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJITEE (International Journal of Information Technology and Electrical Engineering)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijitee.42156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

造成雾霾和气候破坏的原因之一,尤其是在加里曼丹中部的帕朗卡拉雅,是泥炭森林火灾。雾霾造成了很多损失,包括越来越多的人因空气污染和其他相关方面而患呼吸道感染(ARI)。泥炭火灾很难克服,因为火灾地点很难到达。本文主要研究利用卫星影像建立泥炭森林火灾热点分布预测系统。在火灾热点分布预测系统的设计中,采用小波正交法对泥炭森林火灾热点分布进行初始处理。同时,采用反向传播方法识别了该系统中泥炭森林火灾热点分布格局。从已有的泥炭森林火灾热点预测数据测试结果来看,Haar小波分解图像对泥炭森林火灾热点的识别准确率最高,达到90%。该系统的优点是能够预测泥炭森林火灾热点的分布,可用于泥炭森林火灾的预防,特别是在加里曼丹中部的Palangka Raya。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of Peat Forest Fires Using Wavelet and Backpropagation
One of the causes of smog as well as climate damage, particularly in Palangka Raya, Center Kalimantan, are peat forest fires. There are a lot of losses inflicted by the smog including the increasing number of people who suffer respiratory infection (ARI) due to polluted air and any other related aspects. Peat fires are problematic to overcome because the locations of fires are difficult to be accessed. This paper focuses on building the system to predict the distribution of peat forest fire hotspots by utilizing satellite imagery. In designing the system for predicting the fire hotspots distribution, wavelet orthogonal was used as the initial processing of mapping the distribution of peat forest fire hotspots. Meanwhile, backpropagation method was used to identify the fire hotspot distribution patterns of peat forest fire in this system. From the result of the data tested which had been done for predicting the peat forest fire hotspots, the decomposition image obtained using Haar wavelet had the highest percentage of accuracy to recognize the fire hotspots, which is 90%. The recency of this system was its ability to predict the peat forest fire hotspots distribution which can be used as peat forest fires prevention, especially in Palangka Raya, Central Kalimantan.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Eye Blink Classification for Assisting Disability to Communicate Using Bagging and Boosting Product Recommendation Based on Eye Tracking Data Using Fixation Duration Optimal Capacity and Location Wind Turbine to Minimize Power Losses Using NSGA-II Factors Affecting Collaboration Portal Effectiveness of the Audit Board of Indonesia Piezoelectric Energy Harvester for IoT Sensor Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1