实体搜索:在两个世界之间搭建桥梁

K. Balog, E. Meij, M. de Rijke
{"title":"实体搜索:在两个世界之间搭建桥梁","authors":"K. Balog, E. Meij, M. de Rijke","doi":"10.1145/1863879.1863888","DOIUrl":null,"url":null,"abstract":"We consider the task of entity search and examine to which extent state-of-art information retrieval (IR) and semantic web (SW) technologies are capable of answering information needs that focus on entities. We also explore the potential of combining IR with SW technologies to improve the end-to-end performance on a specific entity search task. We arrive at and motivate a proposal to combine text-based entity models with semantic information from the Linked Open Data cloud.","PeriodicalId":239913,"journal":{"name":"SEMSEARCH '10","volume":"34 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"Entity search: building bridges between two worlds\",\"authors\":\"K. Balog, E. Meij, M. de Rijke\",\"doi\":\"10.1145/1863879.1863888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the task of entity search and examine to which extent state-of-art information retrieval (IR) and semantic web (SW) technologies are capable of answering information needs that focus on entities. We also explore the potential of combining IR with SW technologies to improve the end-to-end performance on a specific entity search task. We arrive at and motivate a proposal to combine text-based entity models with semantic information from the Linked Open Data cloud.\",\"PeriodicalId\":239913,\"journal\":{\"name\":\"SEMSEARCH '10\",\"volume\":\"34 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SEMSEARCH '10\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1863879.1863888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SEMSEARCH '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1863879.1863888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

摘要

我们考虑了实体搜索的任务,并检查了最先进的信息检索(IR)和语义网(SW)技术在多大程度上能够满足关注实体的信息需求。我们还探索了将IR与软件技术相结合的潜力,以提高特定实体搜索任务的端到端性能。我们提出了一个建议,将基于文本的实体模型与来自关联开放数据云的语义信息结合起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Entity search: building bridges between two worlds
We consider the task of entity search and examine to which extent state-of-art information retrieval (IR) and semantic web (SW) technologies are capable of answering information needs that focus on entities. We also explore the potential of combining IR with SW technologies to improve the end-to-end performance on a specific entity search task. We arrive at and motivate a proposal to combine text-based entity models with semantic information from the Linked Open Data cloud.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using BM25F for semantic search Dear search engine: what's your opinion about...?: sentiment analysis for semantic enrichment of web search results The wisdom in tweetonomies: acquiring latent conceptual structures from social awareness streams Paraphrasing invariance coefficient: measuring para-query invariance of search engines A large-scale system for annotating and querying quotations in news feeds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1