宏基因组应用中de Bruijn图的并行连接算法

P. Flick, Chirag Jain, Tony Pan, S. Aluru
{"title":"宏基因组应用中de Bruijn图的并行连接算法","authors":"P. Flick, Chirag Jain, Tony Pan, S. Aluru","doi":"10.1145/2807591.2807619","DOIUrl":null,"url":null,"abstract":"Dramatic advances in DNA sequencing technology have made it possible to study microbial environments by direct sequencing of environmental DNA samples. Yet, due to the huge volume and high data complexity, current de novo assemblers cannot handle large metagenomic datasets or fail to perform assembly with acceptable quality. This paper presents the first parallel solution for decomposing the metagenomic assembly problem without compromising the post-assembly quality. We transform this problem into that of finding weakly connected components in the de Bruijn graph. We propose a novel distributed memory algorithm to identify the connected subgraphs, and present strategies to minimize the communication volume. We demonstrate the scalability of our algorithm on a soil metagenome dataset with 1.8 billion reads. Our approach achieves a runtime of 22 minutes using 1280 Intel Xeon cores for a 421 GB uncompressed FASTQ dataset. Moreover, our solution is generalizable to finding connected components in arbitrary undirected graphs.","PeriodicalId":117494,"journal":{"name":"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"A parallel connectivity algorithm for de Bruijn graphs in metagenomic applications\",\"authors\":\"P. Flick, Chirag Jain, Tony Pan, S. Aluru\",\"doi\":\"10.1145/2807591.2807619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dramatic advances in DNA sequencing technology have made it possible to study microbial environments by direct sequencing of environmental DNA samples. Yet, due to the huge volume and high data complexity, current de novo assemblers cannot handle large metagenomic datasets or fail to perform assembly with acceptable quality. This paper presents the first parallel solution for decomposing the metagenomic assembly problem without compromising the post-assembly quality. We transform this problem into that of finding weakly connected components in the de Bruijn graph. We propose a novel distributed memory algorithm to identify the connected subgraphs, and present strategies to minimize the communication volume. We demonstrate the scalability of our algorithm on a soil metagenome dataset with 1.8 billion reads. Our approach achieves a runtime of 22 minutes using 1280 Intel Xeon cores for a 421 GB uncompressed FASTQ dataset. Moreover, our solution is generalizable to finding connected components in arbitrary undirected graphs.\",\"PeriodicalId\":117494,\"journal\":{\"name\":\"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2807591.2807619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2807591.2807619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

DNA测序技术的巨大进步使得通过对环境DNA样本进行直接测序来研究微生物环境成为可能。然而,由于庞大的体积和高数据复杂性,目前的新组装程序无法处理大型宏基因组数据集,或者无法以可接受的质量进行组装。本文提出了一种不影响装配后质量的宏基因组装配问题并行分解方法。我们把这个问题转化为在德布鲁因图中寻找弱连通分量的问题。我们提出了一种新的分布式内存算法来识别连接子图,并提出了最小化通信量的策略。我们在一个具有18亿次读取的土壤宏基因组数据集上展示了算法的可扩展性。我们的方法在421 GB未压缩的FASTQ数据集上使用1280个Intel Xeon内核实现了22分钟的运行时间。此外,我们的解可推广到求任意无向图中的连通分量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A parallel connectivity algorithm for de Bruijn graphs in metagenomic applications
Dramatic advances in DNA sequencing technology have made it possible to study microbial environments by direct sequencing of environmental DNA samples. Yet, due to the huge volume and high data complexity, current de novo assemblers cannot handle large metagenomic datasets or fail to perform assembly with acceptable quality. This paper presents the first parallel solution for decomposing the metagenomic assembly problem without compromising the post-assembly quality. We transform this problem into that of finding weakly connected components in the de Bruijn graph. We propose a novel distributed memory algorithm to identify the connected subgraphs, and present strategies to minimize the communication volume. We demonstrate the scalability of our algorithm on a soil metagenome dataset with 1.8 billion reads. Our approach achieves a runtime of 22 minutes using 1280 Intel Xeon cores for a 421 GB uncompressed FASTQ dataset. Moreover, our solution is generalizable to finding connected components in arbitrary undirected graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal scheduling of in-situ analysis for large-scale scientific simulations Monetary cost optimizations for MPI-based HPC applications on Amazon clouds: checkpoints and replicated execution IOrchestra: supporting high-performance data-intensive applications in the cloud via collaborative virtualization An input-adaptive and in-place approach to dense tensor-times-matrix multiply Scalable sparse tensor decompositions in distributed memory systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1