植物分割的深度卷积和上卷积网络

Eal Kim, Suhyeon Im, O-Joun Lee, H. Park, Hyeonjoon Moon, J. T. Kwak
{"title":"植物分割的深度卷积和上卷积网络","authors":"Eal Kim, Suhyeon Im, O-Joun Lee, H. Park, Hyeonjoon Moon, J. T. Kwak","doi":"10.23919/ELINFOCOM.2018.8330659","DOIUrl":null,"url":null,"abstract":"In this study, we propose a deep learning method to segment plants in images. The deep learning method is composed of a contracting path and expanding path. The contracting path learns high level feature representation of images and the expanding path interprets the high level features and generates segmentation maps. The proposed method is trained and validated, via five-fold cross validation, using images of radish seedlings. The method achieved 99.15% accuracy and 0.9790 Dice coefficient, suggesting that deep learning could play a significant role in processing and analyzing plant images.","PeriodicalId":413646,"journal":{"name":"2018 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep convolution and up-convolution network for plant segmentation\",\"authors\":\"Eal Kim, Suhyeon Im, O-Joun Lee, H. Park, Hyeonjoon Moon, J. T. Kwak\",\"doi\":\"10.23919/ELINFOCOM.2018.8330659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we propose a deep learning method to segment plants in images. The deep learning method is composed of a contracting path and expanding path. The contracting path learns high level feature representation of images and the expanding path interprets the high level features and generates segmentation maps. The proposed method is trained and validated, via five-fold cross validation, using images of radish seedlings. The method achieved 99.15% accuracy and 0.9790 Dice coefficient, suggesting that deep learning could play a significant role in processing and analyzing plant images.\",\"PeriodicalId\":413646,\"journal\":{\"name\":\"2018 International Conference on Electronics, Information, and Communication (ICEIC)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Electronics, Information, and Communication (ICEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ELINFOCOM.2018.8330659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ELINFOCOM.2018.8330659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们提出了一种深度学习方法来分割图像中的植物。深度学习方法由收缩路径和扩展路径组成。收缩路径学习图像的高级特征表示,扩展路径解释高级特征并生成分割图。利用萝卜苗图像,通过五重交叉验证对所提出的方法进行了训练和验证。该方法的准确率达到99.15%,Dice系数达到0.9790,表明深度学习在植物图像的处理和分析中可以发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep convolution and up-convolution network for plant segmentation
In this study, we propose a deep learning method to segment plants in images. The deep learning method is composed of a contracting path and expanding path. The contracting path learns high level feature representation of images and the expanding path interprets the high level features and generates segmentation maps. The proposed method is trained and validated, via five-fold cross validation, using images of radish seedlings. The method achieved 99.15% accuracy and 0.9790 Dice coefficient, suggesting that deep learning could play a significant role in processing and analyzing plant images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sensing voltage compensation circuit for low-power dram bit-line sense amplifier Coordinate-RNN for error correction on numerical weather prediction Pulsed PMOS sense amplifier for high speed single-ended SRAM An estimation of road surface conditions using participatory sensing Cycle-accurate full system simulation for CPU+GPU+HBM computing platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1