B. Einsla, Ethan C Glor, J. Roper, Jeff Leitinger, Nick Nicholas, S. Woodfin
{"title":"纸和纸板涂料中用作强度添加剂的空心球颜料的使用。第2部分:纸板不透明度和强度配方的优化","authors":"B. Einsla, Ethan C Glor, J. Roper, Jeff Leitinger, Nick Nicholas, S. Woodfin","doi":"10.32964/tj19.11.597","DOIUrl":null,"url":null,"abstract":"This report aims to summarize the efforts in testing the properties of coatings for paperboard utilizing hollow sphere pigments (HSPs). HSPs are known to effectively scatter light and replace titanium dioxide (TiO2) in architectural coating formulations. The effect of the particle size and void fraction was evaluated, along with many \ncoating parameters, including level of addition, binder chemistry, and blends of two HSPs. \nThe small HSPs that have optimized voids for scattering light showed equivalent strength to the TiO2-containing control. The strength data was surprising, particularly the improvement in strength for coatings containing large particle size HSPs. Because of this increase in strength, four parts of binder could be removed, which allowed for higher brightness while not compromising other properties, including hot melt glueability. These trends held true using different binder chemistries (styrene acrylic, vinyl acrylic, and styrene butadiene). Upon refining the formulations further, blends of two HSPs showed further benefit.","PeriodicalId":277149,"journal":{"name":"November 2020","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The use of hollow sphere pigments as strength additives in paper and paperboard coatings—Part 2: Optimization in paperboard formulations for opacity and strength\",\"authors\":\"B. Einsla, Ethan C Glor, J. Roper, Jeff Leitinger, Nick Nicholas, S. Woodfin\",\"doi\":\"10.32964/tj19.11.597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This report aims to summarize the efforts in testing the properties of coatings for paperboard utilizing hollow sphere pigments (HSPs). HSPs are known to effectively scatter light and replace titanium dioxide (TiO2) in architectural coating formulations. The effect of the particle size and void fraction was evaluated, along with many \\ncoating parameters, including level of addition, binder chemistry, and blends of two HSPs. \\nThe small HSPs that have optimized voids for scattering light showed equivalent strength to the TiO2-containing control. The strength data was surprising, particularly the improvement in strength for coatings containing large particle size HSPs. Because of this increase in strength, four parts of binder could be removed, which allowed for higher brightness while not compromising other properties, including hot melt glueability. These trends held true using different binder chemistries (styrene acrylic, vinyl acrylic, and styrene butadiene). Upon refining the formulations further, blends of two HSPs showed further benefit.\",\"PeriodicalId\":277149,\"journal\":{\"name\":\"November 2020\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"November 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32964/tj19.11.597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"November 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32964/tj19.11.597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The use of hollow sphere pigments as strength additives in paper and paperboard coatings—Part 2: Optimization in paperboard formulations for opacity and strength
This report aims to summarize the efforts in testing the properties of coatings for paperboard utilizing hollow sphere pigments (HSPs). HSPs are known to effectively scatter light and replace titanium dioxide (TiO2) in architectural coating formulations. The effect of the particle size and void fraction was evaluated, along with many
coating parameters, including level of addition, binder chemistry, and blends of two HSPs.
The small HSPs that have optimized voids for scattering light showed equivalent strength to the TiO2-containing control. The strength data was surprising, particularly the improvement in strength for coatings containing large particle size HSPs. Because of this increase in strength, four parts of binder could be removed, which allowed for higher brightness while not compromising other properties, including hot melt glueability. These trends held true using different binder chemistries (styrene acrylic, vinyl acrylic, and styrene butadiene). Upon refining the formulations further, blends of two HSPs showed further benefit.