线性错位时间序列-深度神经网络轴承故障分类

Pramudyana Agus Harlianto, N. A. Setiawan, T. B. Adji
{"title":"线性错位时间序列-深度神经网络轴承故障分类","authors":"Pramudyana Agus Harlianto, N. A. Setiawan, T. B. Adji","doi":"10.1109/ICST50505.2020.9732816","DOIUrl":null,"url":null,"abstract":"Bearing is a critical component in an induction motor. Diagnosing bearing fault is one of important task in maintenance activities. Deep learning has been applied for diagnosing bearing fault. This paper compares several dislocating methods as the input for Deep Neural Network (DNN) which will be used for classifying electric motor bearing fault. Linear Dislocated Time Series (LDTS) is proposed and evaluated for feeding (input) of Deep Neural Network. The result shows that LDTS gives the better accuracy (97.29%) compared to other dislocating methods.","PeriodicalId":125807,"journal":{"name":"2020 6th International Conference on Science and Technology (ICST)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Linear Dislocated Time Series - Deep Neural Network for Bearing Fault Classification\",\"authors\":\"Pramudyana Agus Harlianto, N. A. Setiawan, T. B. Adji\",\"doi\":\"10.1109/ICST50505.2020.9732816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bearing is a critical component in an induction motor. Diagnosing bearing fault is one of important task in maintenance activities. Deep learning has been applied for diagnosing bearing fault. This paper compares several dislocating methods as the input for Deep Neural Network (DNN) which will be used for classifying electric motor bearing fault. Linear Dislocated Time Series (LDTS) is proposed and evaluated for feeding (input) of Deep Neural Network. The result shows that LDTS gives the better accuracy (97.29%) compared to other dislocating methods.\",\"PeriodicalId\":125807,\"journal\":{\"name\":\"2020 6th International Conference on Science and Technology (ICST)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 6th International Conference on Science and Technology (ICST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICST50505.2020.9732816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th International Conference on Science and Technology (ICST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICST50505.2020.9732816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

轴承是感应电动机的关键部件。轴承故障诊断是维修活动中的一项重要任务。深度学习已被应用于轴承故障诊断。本文比较了几种错位方法作为深度神经网络(DNN)的输入,并将其用于电动机轴承故障分类。提出并评估了线性错位时间序列(LDTS)作为深度神经网络的输入输入。结果表明,LDTS与其他错位方法相比,准确率达到97.29%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Linear Dislocated Time Series - Deep Neural Network for Bearing Fault Classification
Bearing is a critical component in an induction motor. Diagnosing bearing fault is one of important task in maintenance activities. Deep learning has been applied for diagnosing bearing fault. This paper compares several dislocating methods as the input for Deep Neural Network (DNN) which will be used for classifying electric motor bearing fault. Linear Dislocated Time Series (LDTS) is proposed and evaluated for feeding (input) of Deep Neural Network. The result shows that LDTS gives the better accuracy (97.29%) compared to other dislocating methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Review on Battery Energy Storage System for Power System with Grid Connected Wind Farm Identification of Reef Characteristics Using Remote Sensing Technology in Ayau Islands, Indonesia Cardinality Single Column Analysis for Data Profiling using an Open Source Platform Techno-Economic Analysis of Implementation IEEE 802.11ah Standard for Smart Meter Application in Bandung Area Performance Analysis of On-Off Keying Modulation on Underwater Visible Light Communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1