机载光学平台偏光片最佳旋转角度的计算

Bin Feng, Zelin Shi
{"title":"机载光学平台偏光片最佳旋转角度的计算","authors":"Bin Feng, Zelin Shi","doi":"10.1117/12.900139","DOIUrl":null,"url":null,"abstract":"The rotation angle of a mounted polarizer in front of a camera has a direct effect on imaging quality and therefore this paper presents a rapid computation method for a polarizer's optimal rotation angle on an airborne optical platform. The computation contains four steps. First, we construct a world coordinate system and a camera coordinate system that both adopt the center of a code disc as their common origin. Second, we take the origin of the world coordinate system as a start point, intercept a unit segment along the sunlight direction and compute the endpoint coordinates of the unit segment in the world coordinate system. Third, by mapping the relation from the world coordinate system to the camera coordinate system, we compute the above endpoint coordinates in the camera coordinate system. Fourth, we project the above segment towards a disc code plane, compute the angle between the projected line and the reference of the code disc, and take the resultant angle distance as a polarizer's optimal rotation angle of airlight rejection utilizing polarization filtering. Experiment results indicate that our computation method of a polarizer's optimal rotation angle can be applied to airlight rejection on an airborne optical platform.","PeriodicalId":355017,"journal":{"name":"Photoelectronic Detection and Imaging","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computation for polarizer's optimal rotation angle on airborne optical platform\",\"authors\":\"Bin Feng, Zelin Shi\",\"doi\":\"10.1117/12.900139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rotation angle of a mounted polarizer in front of a camera has a direct effect on imaging quality and therefore this paper presents a rapid computation method for a polarizer's optimal rotation angle on an airborne optical platform. The computation contains four steps. First, we construct a world coordinate system and a camera coordinate system that both adopt the center of a code disc as their common origin. Second, we take the origin of the world coordinate system as a start point, intercept a unit segment along the sunlight direction and compute the endpoint coordinates of the unit segment in the world coordinate system. Third, by mapping the relation from the world coordinate system to the camera coordinate system, we compute the above endpoint coordinates in the camera coordinate system. Fourth, we project the above segment towards a disc code plane, compute the angle between the projected line and the reference of the code disc, and take the resultant angle distance as a polarizer's optimal rotation angle of airlight rejection utilizing polarization filtering. Experiment results indicate that our computation method of a polarizer's optimal rotation angle can be applied to airlight rejection on an airborne optical platform.\",\"PeriodicalId\":355017,\"journal\":{\"name\":\"Photoelectronic Detection and Imaging\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photoelectronic Detection and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.900139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoelectronic Detection and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.900139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对机载光学平台上安装在相机前的偏光片的旋转角度直接影响成像质量的问题,提出了一种快速计算机载光学平台上偏光片最佳旋转角度的方法。计算包含四个步骤。首先,我们构建了以码盘中心为共同原点的世界坐标系和摄像机坐标系。其次,以世界坐标系原点为起点,沿阳光方向截取一个单位线段,计算该单位线段在世界坐标系中的端点坐标。第三,通过映射世界坐标系到摄像机坐标系的关系,在摄像机坐标系中计算上述端点坐标。第四,我们将上述段投影到光盘编码平面上,计算投影线与码盘参考之间的夹角,并将所得到的夹角距离作为偏振滤波的偏振器的最佳旋转角度。实验结果表明,所提出的偏振片最佳旋转角度的计算方法可以应用于机载光学平台的光抑制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computation for polarizer's optimal rotation angle on airborne optical platform
The rotation angle of a mounted polarizer in front of a camera has a direct effect on imaging quality and therefore this paper presents a rapid computation method for a polarizer's optimal rotation angle on an airborne optical platform. The computation contains four steps. First, we construct a world coordinate system and a camera coordinate system that both adopt the center of a code disc as their common origin. Second, we take the origin of the world coordinate system as a start point, intercept a unit segment along the sunlight direction and compute the endpoint coordinates of the unit segment in the world coordinate system. Third, by mapping the relation from the world coordinate system to the camera coordinate system, we compute the above endpoint coordinates in the camera coordinate system. Fourth, we project the above segment towards a disc code plane, compute the angle between the projected line and the reference of the code disc, and take the resultant angle distance as a polarizer's optimal rotation angle of airlight rejection utilizing polarization filtering. Experiment results indicate that our computation method of a polarizer's optimal rotation angle can be applied to airlight rejection on an airborne optical platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and characterization of radiation tolerant CMOS image sensor for space applications Measuring the steel tensile deformation based on linear CCD 3D hand and palmprint acquisition using full-field composite color fringe projection Research on surface free energy of electrowetting liquid zoom lens Research on inside surface of hollow reactor based on photoelectric detecting technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1