基于树莓派3的驾驶员困倦和分心预警系统

Toan Dao Thanh, Vo Thien Linh
{"title":"基于树莓派3的驾驶员困倦和分心预警系统","authors":"Toan Dao Thanh, Vo Thien Linh","doi":"10.25073/tcsj.70.3.4","DOIUrl":null,"url":null,"abstract":"In this article, a system to detect driver drowsiness and distraction based on image sensing technique is created. With a camera used to observe the face of driver, the image processing system embedded in the Raspberry Pi 3 Kit will generate a warning sound when the driver shows drowsiness based on the eye-closed state or a yawn. To detect the closed eye state, we use the ratio of the distance between the eyelids and the ratio of the distance between the upper lip and the lower lip when yawning. A trained data set to extract 68 facial features and “frontal face detectors” in Dlib are utilized to determine the eyes and mouth positions needed to carry out identification. Experimental data from the tests of the system on Vietnamese volunteers in our University laboratory show that the system can detect at realtime the common driver states of “Normal”, “Close eyes”, “Yawn” or “Distraction”","PeriodicalId":129747,"journal":{"name":"Transport and Communication Science Journal","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A driver drowsiness and distraction warning system based on raspberry Pi 3 Kit\",\"authors\":\"Toan Dao Thanh, Vo Thien Linh\",\"doi\":\"10.25073/tcsj.70.3.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a system to detect driver drowsiness and distraction based on image sensing technique is created. With a camera used to observe the face of driver, the image processing system embedded in the Raspberry Pi 3 Kit will generate a warning sound when the driver shows drowsiness based on the eye-closed state or a yawn. To detect the closed eye state, we use the ratio of the distance between the eyelids and the ratio of the distance between the upper lip and the lower lip when yawning. A trained data set to extract 68 facial features and “frontal face detectors” in Dlib are utilized to determine the eyes and mouth positions needed to carry out identification. Experimental data from the tests of the system on Vietnamese volunteers in our University laboratory show that the system can detect at realtime the common driver states of “Normal”, “Close eyes”, “Yawn” or “Distraction”\",\"PeriodicalId\":129747,\"journal\":{\"name\":\"Transport and Communication Science Journal\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport and Communication Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25073/tcsj.70.3.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport and Communication Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/tcsj.70.3.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文设计了一种基于图像传感技术的驾驶员困倦和分心检测系统。树莓派3 Kit内置的图像处理系统通过摄像头观察驾驶员的面部,当驾驶员闭上眼睛或打哈欠时,就会发出警告声音。为了检测闭上眼睛的状态,我们使用了打哈欠时眼睑之间距离的比率和上唇与下唇之间距离的比率。利用经过训练的提取68个面部特征的数据集和Dlib中的“正面人脸检测器”来确定进行识别所需的眼睛和嘴巴位置。在我校实验室对越南志愿者进行的实验数据表明,该系统可以实时检测驾驶员的“正常”、“闭上眼睛”、“打哈欠”或“分心”等常见状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A driver drowsiness and distraction warning system based on raspberry Pi 3 Kit
In this article, a system to detect driver drowsiness and distraction based on image sensing technique is created. With a camera used to observe the face of driver, the image processing system embedded in the Raspberry Pi 3 Kit will generate a warning sound when the driver shows drowsiness based on the eye-closed state or a yawn. To detect the closed eye state, we use the ratio of the distance between the eyelids and the ratio of the distance between the upper lip and the lower lip when yawning. A trained data set to extract 68 facial features and “frontal face detectors” in Dlib are utilized to determine the eyes and mouth positions needed to carry out identification. Experimental data from the tests of the system on Vietnamese volunteers in our University laboratory show that the system can detect at realtime the common driver states of “Normal”, “Close eyes”, “Yawn” or “Distraction”
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nghiên cứu thực nghiệm ứng xử dưới tải trọng nén của kết cấu tường bê tông đất Quy hoạch tối ưu vị trí trạm điện kéo trong hệ thống cung cấp điện đường sắt đô thị sử dụng thuật toán quy hoạch nguyên Cơ sở xác định số lượng đầu máy bảo dưỡng sửa chữa trong ngành đường sắt Đặc tính điều động tàu: một vài bổ sung cập nhật mới Mô hình hóa kết cấu bằng phương pháp mặt đáp ứng-một nghiên cứu áp dụng cho công trình ngầm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1