基于内容的多媒体复制检测

Chahid Ouali, P. Dumouchel, Vishwa Gupta
{"title":"基于内容的多媒体复制检测","authors":"Chahid Ouali, P. Dumouchel, Vishwa Gupta","doi":"10.1109/ISM.2015.40","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of multimedia content-based copy detection. We propose several audio and video fingerprints that are highly robust to audio and video transformations. We propose to accelerate the search of fingerprints by using a Graphics Processing Unit (GPU). To speedup this search even further, we propose a two-step search based on a clustering technique and a lookup table that reduces the number of comparisons between the query and the reference fingerprints. We evaluate our fingerprints on the well-known TRECVID 2009 and 2010 datasets, and we show that the proposed fingerprints outperform other state-of-the-art audio and video fingerprints while being significantly faster.","PeriodicalId":250353,"journal":{"name":"2015 IEEE International Symposium on Multimedia (ISM)","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Content-Based Multimedia Copy Detection\",\"authors\":\"Chahid Ouali, P. Dumouchel, Vishwa Gupta\",\"doi\":\"10.1109/ISM.2015.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the problem of multimedia content-based copy detection. We propose several audio and video fingerprints that are highly robust to audio and video transformations. We propose to accelerate the search of fingerprints by using a Graphics Processing Unit (GPU). To speedup this search even further, we propose a two-step search based on a clustering technique and a lookup table that reduces the number of comparisons between the query and the reference fingerprints. We evaluate our fingerprints on the well-known TRECVID 2009 and 2010 datasets, and we show that the proposed fingerprints outperform other state-of-the-art audio and video fingerprints while being significantly faster.\",\"PeriodicalId\":250353,\"journal\":{\"name\":\"2015 IEEE International Symposium on Multimedia (ISM)\",\"volume\":\"159 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Symposium on Multimedia (ISM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2015.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Multimedia (ISM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2015.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文主要研究基于多媒体内容的拷贝检测问题。我们提出了几种对音频和视频转换具有高度鲁棒性的音频和视频指纹。我们建议使用图形处理单元(GPU)来加速指纹的搜索。为了进一步加快搜索速度,我们提出了一种基于聚类技术和查找表的两步搜索方法,该方法减少了查询和参考指纹之间的比较次数。我们在著名的TRECVID 2009和2010数据集上评估了我们的指纹,我们表明,我们提出的指纹比其他最先进的音频和视频指纹性能更好,而且速度要快得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Content-Based Multimedia Copy Detection
In this paper, we address the problem of multimedia content-based copy detection. We propose several audio and video fingerprints that are highly robust to audio and video transformations. We propose to accelerate the search of fingerprints by using a Graphics Processing Unit (GPU). To speedup this search even further, we propose a two-step search based on a clustering technique and a lookup table that reduces the number of comparisons between the query and the reference fingerprints. We evaluate our fingerprints on the well-known TRECVID 2009 and 2010 datasets, and we show that the proposed fingerprints outperform other state-of-the-art audio and video fingerprints while being significantly faster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of the HEVC Coding Efficiency Advance Using 20 Scenes, ITU-T Rec. P.913 Compliant Subjective Methods, VQM, and PSNR Modelling Video Rate Evolution in Adaptive Bitrate Selection SDN Based QoE Optimization for HTTP-Based Adaptive Video Streaming Evaluation of Feature Detection in HDR Based Imaging Under Changes in Illumination Conditions Collaborative Rehabilitation Support System: A Comprehensive Solution for Everyday Rehab
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1