丝素纳米颗粒的结构:疏水性斑块的表征

A. Mammedzade, A. Mammadova, O. Gasymov
{"title":"丝素纳米颗粒的结构:疏水性斑块的表征","authors":"A. Mammedzade, A. Mammadova, O. Gasymov","doi":"10.29039/rusjbpc.2022.0513","DOIUrl":null,"url":null,"abstract":"Nanoparticles are extensively used in various areas of industry. Among different nanoparticles, protein nanoparticles complexed with a wide range of drugs have a great potential for biomedical applications. Silk fibroin exhibits good biocompatibility properties and, therefore, is a good raw material for a wide variety of applications. In this study, structure and hydrophobic patch formation were studied in nanoparticles fabricated from silk fibroin. Far-UV circular dichroism spectroscopy and birefringence observed in a polarized microscope with Congo red staining indicate that fibroin nanoparticles are composed of small amyloid domains. Steady-state and time-resolved fluorescence of ANS revealed two hydrophobic patch formations. Decay-associated spectra of ANS bound to these patches show two species with lifetimes of about 4.2 ns and 14.8 ns. Dissociation constants for ANS complex formation for these patches are 8.3±0.4 M and 5.9±0.3 M, respectively. Acrylamide fluorescence quenching shows that solvent accessibility to native Trp residues is significantly decreased during fibroin nanoparticle formation. Data indicate that nanoparticles fabricated from fibroin are a good candidate for drug delivery applications.","PeriodicalId":169374,"journal":{"name":"Russian Journal of Biological Physics and Chemisrty","volume":"275 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STRUCTURE OF SILK FIBROIN NANOPARTICLES: CHARACTERIZATION OF HYDROPHOBIC PATCHES\",\"authors\":\"A. Mammedzade, A. Mammadova, O. Gasymov\",\"doi\":\"10.29039/rusjbpc.2022.0513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanoparticles are extensively used in various areas of industry. Among different nanoparticles, protein nanoparticles complexed with a wide range of drugs have a great potential for biomedical applications. Silk fibroin exhibits good biocompatibility properties and, therefore, is a good raw material for a wide variety of applications. In this study, structure and hydrophobic patch formation were studied in nanoparticles fabricated from silk fibroin. Far-UV circular dichroism spectroscopy and birefringence observed in a polarized microscope with Congo red staining indicate that fibroin nanoparticles are composed of small amyloid domains. Steady-state and time-resolved fluorescence of ANS revealed two hydrophobic patch formations. Decay-associated spectra of ANS bound to these patches show two species with lifetimes of about 4.2 ns and 14.8 ns. Dissociation constants for ANS complex formation for these patches are 8.3±0.4 M and 5.9±0.3 M, respectively. Acrylamide fluorescence quenching shows that solvent accessibility to native Trp residues is significantly decreased during fibroin nanoparticle formation. Data indicate that nanoparticles fabricated from fibroin are a good candidate for drug delivery applications.\",\"PeriodicalId\":169374,\"journal\":{\"name\":\"Russian Journal of Biological Physics and Chemisrty\",\"volume\":\"275 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Biological Physics and Chemisrty\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29039/rusjbpc.2022.0513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Biological Physics and Chemisrty","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29039/rusjbpc.2022.0513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纳米颗粒广泛应用于工业的各个领域。在不同的纳米颗粒中,蛋白质纳米颗粒与多种药物的络合具有很大的生物医学应用潜力。丝素具有良好的生物相容性,是一种具有广泛应用价值的原料。在本研究中,研究了丝素纳米颗粒的结构和疏水斑块的形成。在刚果红染色的偏光显微镜下观察到的远紫外圆二色光谱和双折射表明,丝蛋白纳米颗粒是由小淀粉样蛋白结构域组成的。稳态和时间分辨荧光显示两个疏水斑块形成。与这些斑块结合的ANS的衰变相关光谱显示两种物质的寿命分别为4.2 ns和14.8 ns。这些斑块形成ANS复合物的解离常数分别为8.3±0.4M和5.9±0.3M。丙烯酰胺荧光猝灭表明,在丝素纳米颗粒形成过程中,溶剂对天然色氨酸残基的可及性显著降低。数据表明,由纤维蛋白制备的纳米颗粒是药物递送应用的良好候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
STRUCTURE OF SILK FIBROIN NANOPARTICLES: CHARACTERIZATION OF HYDROPHOBIC PATCHES
Nanoparticles are extensively used in various areas of industry. Among different nanoparticles, protein nanoparticles complexed with a wide range of drugs have a great potential for biomedical applications. Silk fibroin exhibits good biocompatibility properties and, therefore, is a good raw material for a wide variety of applications. In this study, structure and hydrophobic patch formation were studied in nanoparticles fabricated from silk fibroin. Far-UV circular dichroism spectroscopy and birefringence observed in a polarized microscope with Congo red staining indicate that fibroin nanoparticles are composed of small amyloid domains. Steady-state and time-resolved fluorescence of ANS revealed two hydrophobic patch formations. Decay-associated spectra of ANS bound to these patches show two species with lifetimes of about 4.2 ns and 14.8 ns. Dissociation constants for ANS complex formation for these patches are 8.3±0.4 M and 5.9±0.3 M, respectively. Acrylamide fluorescence quenching shows that solvent accessibility to native Trp residues is significantly decreased during fibroin nanoparticle formation. Data indicate that nanoparticles fabricated from fibroin are a good candidate for drug delivery applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
STATISTICAL EVALUATION FOR BACTERIA ELECTRO-STIMULATION USING THE DUNNETT METHOD FOR A MICROBIAL FUEL CELL CRITICAL AND LETHAL OXYGEN CONCENTRATIONS FOR SOME BLACK SEA FISH (SHORT REVIEW) WEB-SERVICES FOR MICRORNA TARGET PREDICTION USING NEURAL NETWORKS RECONSTRUCTION OF GENE AND ASSOCIATIVE NETWORKS OF DISEASES TO SEARCH FOR TARGET GENES GENERALIZATION OF THE THERMOKINETIC OREGONATOR MODEL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1