图核在模型驱动工程问题中的应用

R. Clarisó, Jordi Cabot
{"title":"图核在模型驱动工程问题中的应用","authors":"R. Clarisó, Jordi Cabot","doi":"10.1145/3243127.3243128","DOIUrl":null,"url":null,"abstract":"Machine Learning (ML) can be used to analyze and classify large collections of graph-based information, e.g. images, location information, the structure of molecules and proteins, ... Graph kernels is one of the ML techniques typically used for such tasks. In a software engineering context, models of a system such as structural or architectural diagrams can be viewed as labeled graphs. Thus, in this paper we propose to employ graph kernels for clustering software modeling artifacts. Among other benefits, this would improve the efficiency and usability of a variety of software modeling activities, e.g., design space exploration, testing or verification and validation.","PeriodicalId":244058,"journal":{"name":"Proceedings of the 1st International Workshop on Machine Learning and Software Engineering in Symbiosis","volume":"26 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Applying graph kernels to model-driven engineering problems\",\"authors\":\"R. Clarisó, Jordi Cabot\",\"doi\":\"10.1145/3243127.3243128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine Learning (ML) can be used to analyze and classify large collections of graph-based information, e.g. images, location information, the structure of molecules and proteins, ... Graph kernels is one of the ML techniques typically used for such tasks. In a software engineering context, models of a system such as structural or architectural diagrams can be viewed as labeled graphs. Thus, in this paper we propose to employ graph kernels for clustering software modeling artifacts. Among other benefits, this would improve the efficiency and usability of a variety of software modeling activities, e.g., design space exploration, testing or verification and validation.\",\"PeriodicalId\":244058,\"journal\":{\"name\":\"Proceedings of the 1st International Workshop on Machine Learning and Software Engineering in Symbiosis\",\"volume\":\"26 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st International Workshop on Machine Learning and Software Engineering in Symbiosis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3243127.3243128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International Workshop on Machine Learning and Software Engineering in Symbiosis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3243127.3243128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

机器学习(ML)可用于分析和分类基于图形的大量信息,例如图像、位置信息、分子和蛋白质的结构等。图核是通常用于此类任务的ML技术之一。在软件工程上下文中,系统模型(如结构图或架构图)可以被视为标记的图。因此,在本文中,我们建议使用图核来聚类软件建模工件。在其他好处中,这将提高各种软件建模活动的效率和可用性,例如,设计空间探索、测试或验证和确认。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Applying graph kernels to model-driven engineering problems
Machine Learning (ML) can be used to analyze and classify large collections of graph-based information, e.g. images, location information, the structure of molecules and proteins, ... Graph kernels is one of the ML techniques typically used for such tasks. In a software engineering context, models of a system such as structural or architectural diagrams can be viewed as labeled graphs. Thus, in this paper we propose to employ graph kernels for clustering software modeling artifacts. Among other benefits, this would improve the efficiency and usability of a variety of software modeling activities, e.g., design space exploration, testing or verification and validation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proceedings of the 1st International Workshop on Machine Learning and Software Engineering in Symbiosis Fast deployment and scoring of support vector machine models in CPU and GPU A language-agnostic model for semantic source code labeling Learning-based testing for autonomous systems using spatial and temporal requirements A deep learning approach to program similarity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1