利用极大极小凹惩罚指数估计无标度网络

K. Hirose, Y. Ogura, Hidetoshi Shimodaira
{"title":"利用极大极小凹惩罚指数估计无标度网络","authors":"K. Hirose, Y. Ogura, Hidetoshi Shimodaira","doi":"10.5183/JJSCS.1503001_215","DOIUrl":null,"url":null,"abstract":"We consider the problem of sparse estimation of undirected graphical models via the L1 regularization. The ordinary lasso encourages the sparsity on all edges equally likely, so that all nodes tend to have small degrees. On the other hand, many real-world networks are often scale-free, where some nodes have a large number of edges. In such cases, a penalty that induces structured sparsity, such as a log penalty, performs better than the ordinary lasso. In practical situations, however, it is difficult to determine an optimal penalty among the ordinary lasso, log penalty, or somewhere in between. In this paper, we introduce a new class of penalty that is based on the exponentiation of the minimax concave penalty. The proposed penalty includes both the lasso and the log penalty, and the gap between these two penalties is bridged by a tuning parameter. We apply cross-validation to select an appropriate value of the tuning parameter. Monte Carlo simulations are conducted to investigate the performance of our proposed procedure. The numerical result shows that the proposed method can perform better than the existing log penalty and the ordinary lasso.","PeriodicalId":338719,"journal":{"name":"Journal of the Japanese Society of Computational Statistics","volume":"161 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ESTIMATING SCALE-FREE NETWORKS VIA THE EXPONENTIATION OF MINIMAX CONCAVE PENALTY\",\"authors\":\"K. Hirose, Y. Ogura, Hidetoshi Shimodaira\",\"doi\":\"10.5183/JJSCS.1503001_215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of sparse estimation of undirected graphical models via the L1 regularization. The ordinary lasso encourages the sparsity on all edges equally likely, so that all nodes tend to have small degrees. On the other hand, many real-world networks are often scale-free, where some nodes have a large number of edges. In such cases, a penalty that induces structured sparsity, such as a log penalty, performs better than the ordinary lasso. In practical situations, however, it is difficult to determine an optimal penalty among the ordinary lasso, log penalty, or somewhere in between. In this paper, we introduce a new class of penalty that is based on the exponentiation of the minimax concave penalty. The proposed penalty includes both the lasso and the log penalty, and the gap between these two penalties is bridged by a tuning parameter. We apply cross-validation to select an appropriate value of the tuning parameter. Monte Carlo simulations are conducted to investigate the performance of our proposed procedure. The numerical result shows that the proposed method can perform better than the existing log penalty and the ordinary lasso.\",\"PeriodicalId\":338719,\"journal\":{\"name\":\"Journal of the Japanese Society of Computational Statistics\",\"volume\":\"161 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Japanese Society of Computational Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5183/JJSCS.1503001_215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japanese Society of Computational Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5183/JJSCS.1503001_215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用L1正则化方法研究无向图模型的稀疏估计问题。普通套索鼓励所有边的稀疏性等可能,因此所有节点都倾向于具有较小的度。另一方面,许多现实世界的网络通常是无标度的,其中一些节点具有大量的边。在这种情况下,诱导结构化稀疏性的惩罚(例如log惩罚)比普通套索执行得更好。然而,在实际情况中,很难在普通套索惩罚、对数惩罚或两者之间确定最优惩罚。本文引入了一类新的基于极大极小凹惩罚的幂次惩罚。建议的惩罚包括套索惩罚和日志惩罚,这两种惩罚之间的差距通过调优参数来弥补。我们应用交叉验证来选择一个合适的调优参数值。通过蒙特卡罗模拟来研究我们提出的程序的性能。数值结果表明,该方法比现有的对数惩罚和普通套索具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ESTIMATING SCALE-FREE NETWORKS VIA THE EXPONENTIATION OF MINIMAX CONCAVE PENALTY
We consider the problem of sparse estimation of undirected graphical models via the L1 regularization. The ordinary lasso encourages the sparsity on all edges equally likely, so that all nodes tend to have small degrees. On the other hand, many real-world networks are often scale-free, where some nodes have a large number of edges. In such cases, a penalty that induces structured sparsity, such as a log penalty, performs better than the ordinary lasso. In practical situations, however, it is difficult to determine an optimal penalty among the ordinary lasso, log penalty, or somewhere in between. In this paper, we introduce a new class of penalty that is based on the exponentiation of the minimax concave penalty. The proposed penalty includes both the lasso and the log penalty, and the gap between these two penalties is bridged by a tuning parameter. We apply cross-validation to select an appropriate value of the tuning parameter. Monte Carlo simulations are conducted to investigate the performance of our proposed procedure. The numerical result shows that the proposed method can perform better than the existing log penalty and the ordinary lasso.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ENHANCING POWER OF SCORE TESTS FOR REGRESSION MODELS VIA FISHER TRANSFORMATION ANNOUNCEMENT: ON PUBLICATION OF THE JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE DISTRIBUTION OF THE LARGEST EIGENVALUE OF AN ELLIPTICAL WISHART MATRIX AND ITS SIMULATION COMMENT: ON CLOSING OF ENGLISH JOURNAL OF JSCS AND THE BIRTH OF NEW JOURNAL JJSD INFERENCE FOR THE EXTENT PARAMETER OF DAMAGE BY TSUNAMI WITH POINCARE CONES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1