基于模糊熵的模糊SAW方法及权重确定

D. Kacprzak
{"title":"基于模糊熵的模糊SAW方法及权重确定","authors":"D. Kacprzak","doi":"10.5604/01.3001.0014.0524","DOIUrl":null,"url":null,"abstract":"The paper presents a new approach to the fuzzy SAW method, which uses fuzzy entropy. It allows to identify the best alternative by the application FSAW method if decision makers use fuzzy numbers or linguistic variables. Moreover, the presented method allows to avoid subjectivity and imprecision caused by incomplete knowledge, judgments, opinions and preferences of decision makers.\n\n","PeriodicalId":357447,"journal":{"name":"Przegląd Statystyczny","volume":"791 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Fuzzy SAW Method and Weights Determined Based on Fuzzy Entropy\",\"authors\":\"D. Kacprzak\",\"doi\":\"10.5604/01.3001.0014.0524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a new approach to the fuzzy SAW method, which uses fuzzy entropy. It allows to identify the best alternative by the application FSAW method if decision makers use fuzzy numbers or linguistic variables. Moreover, the presented method allows to avoid subjectivity and imprecision caused by incomplete knowledge, judgments, opinions and preferences of decision makers.\\n\\n\",\"PeriodicalId\":357447,\"journal\":{\"name\":\"Przegląd Statystyczny\",\"volume\":\"791 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Przegląd Statystyczny\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0014.0524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Przegląd Statystyczny","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0014.0524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种利用模糊熵的模糊声传导方法。如果决策者使用模糊数或语言变量,它允许通过应用FSAW方法识别最佳替代方案。此外,所提出的方法可以避免由于决策者的知识、判断、意见和偏好的不完整而导致的主观性和不准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Fuzzy SAW Method and Weights Determined Based on Fuzzy Entropy
The paper presents a new approach to the fuzzy SAW method, which uses fuzzy entropy. It allows to identify the best alternative by the application FSAW method if decision makers use fuzzy numbers or linguistic variables. Moreover, the presented method allows to avoid subjectivity and imprecision caused by incomplete knowledge, judgments, opinions and preferences of decision makers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of a priori positive information on the results of voting methods Comparison of the accuracy of forecasts bsed on neural networks before and after the outbreak of the COVID-19 pandemic on the example of selected exchange rates Estimation of Yu and Meyer bivariate stochastic volatility model by iterated filtering Sample size in clinical trials – challenges and approaches Alternative investments during turbulent times comparison of dynamic relationship
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1