A. Abate, I. Bessa, Dario Cattaruzza, Lennon C. Chaves, L. Cordeiro, C. David, Pascal Kesseli, D. Kroening, E. Polgreen
{"title":"DSSynth:用于物理工厂的自动数字控制器合成工具","authors":"A. Abate, I. Bessa, Dario Cattaruzza, Lennon C. Chaves, L. Cordeiro, C. David, Pascal Kesseli, D. Kroening, E. Polgreen","doi":"10.1109/ASE.2017.8115705","DOIUrl":null,"url":null,"abstract":"We present an automated MATLAB Toolbox, named DSSynth (Digital-System Synthesizer), to synthesize sound digital controllers for physical plants that are represented as linear timeinvariant systems with single input and output. In particular, DSSynth synthesizes digital controllers that are sound w.r.t. stability and safety specifications. DSSynth considers the complete range of approximations, including time discretization, quantization effects and finite-precision arithmetic (and its rounding errors). We demonstrate the practical value of this toolbox by automatically synthesizing stable and safe controllers for intricate physical plant models from the digital control literature. The resulting toolbox enables the application of program synthesis to real-world control engineering problems. A demonstration can be found at https://youtu.be_hLQslRcee8.","PeriodicalId":382876,"journal":{"name":"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"DSSynth: An automated digital controller synthesis tool for physical plants\",\"authors\":\"A. Abate, I. Bessa, Dario Cattaruzza, Lennon C. Chaves, L. Cordeiro, C. David, Pascal Kesseli, D. Kroening, E. Polgreen\",\"doi\":\"10.1109/ASE.2017.8115705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an automated MATLAB Toolbox, named DSSynth (Digital-System Synthesizer), to synthesize sound digital controllers for physical plants that are represented as linear timeinvariant systems with single input and output. In particular, DSSynth synthesizes digital controllers that are sound w.r.t. stability and safety specifications. DSSynth considers the complete range of approximations, including time discretization, quantization effects and finite-precision arithmetic (and its rounding errors). We demonstrate the practical value of this toolbox by automatically synthesizing stable and safe controllers for intricate physical plant models from the digital control literature. The resulting toolbox enables the application of program synthesis to real-world control engineering problems. A demonstration can be found at https://youtu.be_hLQslRcee8.\",\"PeriodicalId\":382876,\"journal\":{\"name\":\"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASE.2017.8115705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2017.8115705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DSSynth: An automated digital controller synthesis tool for physical plants
We present an automated MATLAB Toolbox, named DSSynth (Digital-System Synthesizer), to synthesize sound digital controllers for physical plants that are represented as linear timeinvariant systems with single input and output. In particular, DSSynth synthesizes digital controllers that are sound w.r.t. stability and safety specifications. DSSynth considers the complete range of approximations, including time discretization, quantization effects and finite-precision arithmetic (and its rounding errors). We demonstrate the practical value of this toolbox by automatically synthesizing stable and safe controllers for intricate physical plant models from the digital control literature. The resulting toolbox enables the application of program synthesis to real-world control engineering problems. A demonstration can be found at https://youtu.be_hLQslRcee8.